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A B S T R A C T

We developed a cloud-screening algorithm for direct and diffuse aerosol optical depths (AODs) from the
Skyradiometer Network (CSDD). Variabilities of direct AODs were checked not only to screen cloud-con-
taminated (cloudy) data effectively but also to make direct AODs available for aerosol study, as in the Aerosol
Robotic Network (AERONET). Skyradiometer data were used from the Seoul National University (SNU) site for
three years from 2012 to 2014. CSDD tested the spectral and temporal variabilities according to the Ångström
exponent at the first stage, and the temporal smoothness in the form of the coefficient of variation at the second
stage. The algorithm for CSDD was constructed to minimize the differences with optical properties of cloudy data
(and clear-sky data as well) based on the cloud cover from the synoptic station. A number of cloudy data that was
not screened by the previous algorithms was removed, and the absolute value of the bias total could be sub-
stantially lowered. The performances of algorithms for cloud detection were also examined using lidar ob-
servations at the study site in terms of accuracy, probability of detection (POD), and false detection rate. The
statistics of cloud detection for CSDD were generally comparable to those of AERONET for direct data, and the
POD for diffuse data was improved to the level of direct data.

1. Introduction

During the past two decades, ground-based aerosol remote-sensing
networks, including Aerosol Robotic Network (AERONET) and
Skyradiometer Network (SKYNET), have been deployed throughout the
world (Holben et al., 1998, 2001; Nakajima et al., 2003, 2007;
Campanelli et al., 2012; Zhang et al., 2012; Li et al., 2014; Hamill et al.,
2016; Yoon et al., 2016; Arola et al., 2017). The number of sites has
expanded up to ~600 for AERONET (Giles et al., 2019) and ~ 50 for
SKYNET (http://skynet-isdc.org/obs_sites.php) because of the ease of
acquiring information on aerosols from the ground. The strength of
such networks largely relies on imposing a standardization of mea-
surements and data processing, which allows multi-year and large-scale
studies. However, these networks have a crucial restriction, in that
aerosol optical properties can be measured only under clear-sky con-
ditions in the daytime (Christopher and Gupta, 2010; Choi and Ghim,
2017). Cloud screening (screening of cloud-contaminated data) is par-
ticularly important, because misperception of optically thin clouds as
aerosols, even cirrus clouds, can seriously obscure aerosol optical
properties.

The basic idea of cloud screening starts from the assumption that

radiation changes due to clouds are rapid, whereas those due to aero-
sols are gradual. Smirnov et al. (2000) set up the cloud-screening al-
gorithm for AERONET aerosol optical depths (AODs), consisting of a
stability test for triplet values over a 1-min period, followed by statis-
tical and smoothness tests for data in a day. They indicated that this
algorithm eliminated ~20% to 50% of data as being cloud-con-
taminated. Kaufman et al. (2005, 2006) suggested the spectral-varia-
bility algorithm (SVA) for AERONET AODs for an Ångström exponent
(AE) greater than 0.3 to keep highly variable aerosols such as smoke
plumes, a large proportion of which would be rejected as clouds. It is
known that AERONET version 2 data have been processed by the al-
gorithm developed by Smirnov et al. (2000) after initial checking of the
triplet values of raw signal to remove data with large temporal varia-
tions (Eck et al., 2014). Recently, AERONET released the version 3
database, in which fully automated and improved cloud screening and
quality control checks were implemented. By using an elaborate cloud-
screening algorithm compared to that for the version 2 based on
Smirnov et al. (2000), Giles et al. (2019) reported that about 60% of
data were removed from the complete Sun photometer database, which
is similar to the coverage of clouds globally (about 68%).

For SKYNET, Khatri and Takamura (2009) developed an algorithm
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for cloud screening of skyradiometer data (CSSR), using global irra-
diance measured by a pyranometer. Song et al. (2014) proposed an
improved cloud-screening method (ICSM) consisting of a temporal-
variability test using direct and diffuse AODs and a coarse-mode test to
eliminate data that were likely contaminated by thin cirrus-type clouds.
SKYNET recommended CSSR for cloud screening (http://skynet-isdc.
org/methodology.php).

Whereas direct Sun AODs from AERONET have been utilized in
various studies (Gobbi et al., 2007; Levy et al., 2010; Li et al., 2014;
Zhang et al., 2016), little attention has been paid to direct AODs from
SKYNET. Song et al. (2014) checked the variability of direct AODs but
for separating cloud-contaminated diffuse AODs. We noted direct AODs
from SKYNET because their time intervals (~1 min) are shorter than
those of diffuse AODs from SKYNET (3–10 min), direct Sun AERONET
AODs (3–15 min), and AODs derived from AERONET inversion (~1 h).
It is apparent that short time-interval data have an advantage of pro-
viding detailed information on time variations. However, when dealing
with data from remote-sensing networks, where individual data are
frequently missing (primarily because valid data are available only
under clear-sky conditions), it is more important to obtain more hourly
data by using highly resolved data in short time intervals. More hourly
data can provide more valid daily and monthly data.

In this study, we developed a cloud-screening algorithm for both
direct and diffuse AODs from SKYNET. Variabilities of direct AODs
were checked not only to screen cloud-contaminated (cloudy) data in
short time intervals but also to make full use of direct AODs as in
AERONET. The performance of cloud screening was assessed by com-
paring the optical properties of cloudy data with those based on the
cloud cover during the development of the algorithm, and by com-
paring cloud detections with lidar observations after the development
of the algorithm. The study site was the Seoul National University
(SNU; 37.46°N, 126.95°E, 150 m asl; Fig. 1), where lidar and a pyr-
anometer were installed. The study period was three years from 2012 to
2014.

2. Methods

2.1. Instruments

The skyradiometer, POM-01 (Prede Co. Ltd) at SNU measures direct
and diffuse radiation with a 0.5° field of view at seven wavelengths of
315, 400, 500, 675, 870, 940, and 1020 nm. Diffuse radiation, also
called sky radiation or (diffuse) skylight, was measured on the almu-
cantar plane (with a fixed zenith angle and varied azimuth angle up to
180° on one sides) every 3 min. Direct radiation was measured at in-
tervals of 1 min or less when diffuse radiation was not measured. Except
for radiation at 315- and 940-nm wavelengths, absorbed by ozone and
water vapor, respectively, radiation at five wavelengths is used for
aerosol study. Diffuse AODs were retrieved from almucantar measure-
ments using skyrad.pack version 5 (Hashimoto et al., 2012) that could
suppress the concentration of coarse-mode particles with a radius of
over 10 μm (considered cirrus-contaminated) in comparison with ver-
sion 4.2 (Nakajima et al., 1996). Direct AODs were obtained from direct
radiation using the monochromatic direct solar flux density equation
(Nakajima et al., 1996; Hashimoto et al., 2012), subtracting optical
depths caused by ozone and Rayleigh scattering.

The lidar at SNU is a two-wavelength Mie scattering lidar equipped
with depolarization measurement capability (Kim et al., 2008; Kim
et al., 2014). In addition to an analog detection system, the lidar em-
ploys an Nd:YAG laser as a light source that generates a fundamental
output at 1064 nm and a second harmonic at 532 nm. It has been op-
erated since March 2006 as a part of the National Institute for En-
vironmental Studies (NIES) lidar network (http://www-lidar.nies.go.
jp). The lidar produces a vertical profile up to 18 km with a resolution
of 30 m for 5 min at 0, 15, 30, and 45 min every hour. The presence of
clouds is detected in lidar observation by sharp changes of range-cor-
rected signal returns at cloud bases and tops (Kim et al., 2008; Kim
et al., 2014). Cloud boundaries are identified by the maximum slope of
six sequenced points (altitude) of the returned lidar backscattering

Fig. 1. Location of the Seoul National University (SNU) study site. The Seoul synoptic station (SLSS) and the Suwon synoptic station (SWSS) are about 12 km north of
and 21 km south of the study site, respectively.
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intensity at 532 nm. For optically thin cirrus clouds, a particle depo-
larization ratio at 532 nm (>0.2) is additionally used to distinguish
them from aerosols, because cirrus clouds are composed mostly of non-
spherical ice crystals (Wang and Sassen, 2001).

The global solar irradiance was also measured approximately from
300 to 2800 nm using a collocated CM21 pyranometer (Kipp & Zonen)
for the global irradiance test included in CSSR.

2.2. Determination of clear-sky and cloudy conditions

We first considered lidar to distinguish between clear-sky and
cloudy conditions because it was collocated with skyradiometer.
However, it sees the sky vertically within a narrow solid angle cone
compared to skyradiometer measurements covering the hemispherical
sky. Therefore, AODs only for the solar zenith angle less than 30o were
classified into clear-sky and cloudy (Giles et al., 2019), depending on
whether lidar detected clouds or not, over a 10-min period centered on
the lidar observation time at 15-min intervals. However, due to lim-
itation in the solar zenith angle, useful lidar data were biased to specific
months (April–September) and hours (11:00–14:00 local time). Thus,
we used these lidar observations to evaluate the performance of cloud
detection by the cloud-screening algorithm developed in this study.

During the development of the cloud-screening algorithm, we used
cloud cover observed at the synoptic station operated by the Korea
Meteorological Administration to distinguish between clear-sky and
cloudy conditions. Cloud cover, ranging from 0 to 10, is reported every
hour through human observation. Diffuse and direct AODs over a 10-
min period, spanning five minutes before and after each hour, were
classified as either clear-sky for a cloud cover 0–2 or cloudy otherwise
(Song et al., 2014). Because many studies have attempted to obtain
information on physical and chemical characteristics of aerosols from
optical properties (Eck et al., 2005; Gobbi et al., 2007; Kim et al., 2007;
Russell et al., 2010; Zhang et al., 2012; Collaud Coen et al., 2013; Li
et al., 2014; Yoon et al., 2016), we first compared AOD and AE for
clear-sky and cloudy conditions determined by the cloud cover from the
Seoul synoptic station (37.57°N, 126.97°E, 85.8 m asl; Fig. 1) with those
from cloud-screening algorithms to evaluate the performance of the
algorithm. However, because the Seoul synoptic station is about 12 km
north of the study site, we performed the same comparison using the
cloud cover from the Suwon synoptic station (37.27°N, 126.99°E,
34.1 m asl), which is about 21 km south of the study site, to confirm the
validity of using the cloud cover at different locations.

3. Optical properties of aerosols from selected algorithms

3.1. Optical properties for clear-sky and cloudy conditions based on cloud
cover

Fig. 2 shows the frequency distributions of data points in the do-
main of AE vs. AOD from diffuse and direct radiation. AOD is the value
at 500 nm, and AE was calculated from AODs at 870 and 500 nm. Clear-
sky and cloudy conditions were determined based on the cloud cover
from the Seoul synoptic station. Among 9,858 and 31,994 data from
diffuse and direct radiation, 23% (2,289) and 48% (15,326) of them,
respectively, were classified as cloudy. The frequency of data from
diffuse radiation (diffuse data) for clear-sky condition peaks around
0.2–0.3 for AOD and 1.2–1.6 for AE (Fig. 2a); the peak area of direct
data is broader but similar to that of diffuse data (Fig. 2c). Note that
much more direct data are distributed to high AOD and low AE than
diffuse data, as seen in the lower right portion of Fig. 2c. This is in part
because direct data in shorter time intervals can capture a wider range
of aerosols with higher AOD and lower AE. However, considering that
diffuse AODs are inversion products, the difference in the frequency
distribution between diffuse and direct data in Fig. 2a and c could result
because some diffuse data with high AODs and low AEs were discarded
as abnormal during the retrieval process.

The tendency is clearer for cloudy data. Whereas the upper limit of
AE for direct data decreases with increasing AOD, the lower limit of AE
approaches zero (Fig. 2d). In contrast, diffuse data are scarce at low
AEs, because AEs near zero, which were cloud-contaminated and thus
classified as cloudy, had already been discarded as abnormal during the
retrieval process (Fig. 2b). Several data points at high AEs particularly
for direct data are also worthy of note (Fig. 2d). Since cloudy data will
have lower AEs, these data points are unusual even in small numbers. It
is likely that determination of clear-sky and cloudy conditions based on
the cloud cover would misclassify cloudy data.

3.2. Comparison of biases in optical properties from selected algorithms

In this section, we compared the frequency distributions of data
from each cloud-screening algorithm (A) with those based on the cloud
cover (B) to examine the performances of existing algorithms. The
biases in frequencies of data from each algorithm were calculated by
subtracting (B) from (A). Fig. 3 shows the biases in frequencies of
cloudy data only, because if the biases are positive for cloudy data, they
are negative for clear-sky data, and vice versa. The biases would be zero
if the frequencies of cloudy data selected by a cloud-screening algo-
rithm coincide with those based on the cloud cover at given values of
AE and AOD. The algorithm developed by Smirnov et al. (2000) is
designated as the temporal-variability algorithm (TVA), correspond-
ingly to the SVA developed by Kaufman et al. (2006).

Both TVA and SVA check the triplet variability, which is defined as
the difference between maximum and minimum AODs, to screen the
cloud-contaminated triplet values over 1 min (Smirnov et al., 2000;
Kaufman et al., 2006). In this study, we used both direct and diffuse
AODs, which were obtained from direct and diffuse radiation measured
every 1 to 2 min. Because one or two data were common for 1 min, we
checked the variabilities over a 2-min period. Nevertheless, the number
of data was still one or two during a 2-min period in half the cases, since
the skyradiometer does not measure radiation when it cannot track the
sun because of clouds or when the rain sensor detects rain. If two data
were available for 2 min, the difference between the two values was
checked, but if only one datum was available, it was discarded as being
cloud-contaminated.

For TVA, we carried out two checks and three criteria tests in the
order described in Smirnov et al. (2000), including the triplet stability
criterion test using the aforementioned triplet variabilities during a 2-
min period for five wavelengths (400, 500, 675, 870, and 1020 nm).
The triplet variabilities for SVA were calculated using AODs at 440, 675
and 870 nm, where AOD at 440 nm was obtained by linear interpola-
tion of AODs at 400 and 500 nm. SVA also tested the variabilities of
three AODs using the maximum difference between the current AOD
and the next or previous one at ~15 min intervals. However, we did not
perform this test for SVA because it could not screen additional cloudy
data. We added an asterisk (*) to the acronyms to indicate that we
modified TVA and SVA for skyradiometer data.

Biases tend to be large where the frequencies based on the cloud
cover are large in Fig. 2 for both diffuse and direct data (Fig. 3a and b)
because absolute, instead of relative, values of biases are presented.
Despite a few positive biases, negative biases prevail for both diffuse
and direct data, showing that the algorithms selected in this study did
not screen much cloudy data distinguished based on the cloud cover.
This is more true for SVA* than for TVA*. The discrepancy between
SVA* and TVA* is amplified in the distribution for direct data, as ne-
gative biases are intensified for SVA* while TVA* exhibits some balance
between positive and negative biases (Fig. 3b). In CSSR, negative biases
are mostly found for AE>1.0, probably because data for AE > 1.0
were classified as cloud-free without spectral-variability test (Khatri
and Takamura, 2009).

Note that Figs. 2 and 3 show the distributions of frequencies and
biases, respectively, in the domain of AE and AOD between 0 and 3.
Negative and positive biases were separately summed over the entire
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ranges of AE and AOD (without limiting the values) and are provided as
a percentage in Table 1. The sums of the biases for the diffuse data set
were divided by the total number of diffuse data (before cloud
screening) to calculate the percentage; the same was done for the direct
data set. The bias total is the simple sum of positive and negative bias
sums, whereas the deviation is given by the sum of absolute values of
positive and negative bias sums.

As seen in Fig. 3, all the algorithms demonstrate the negative bias
total. Absolute value of the bias total is lowest for both diffuse and
direct data from TVA*, and so is the deviation. For diffuse data, it is
interesting to note that the deviation of CSSR, which employs the
spectral-variability test as a part of the algorithm, is similar to that of
SVA*, and the deviation of ICSM, which encompasses the concept of the
temporal-variability test, is similar to that of TVA*. However, the de-
viations of TVA* and SVA* originally developed for AERONET are
lower than those of ICSM and CSSR developed for SKYNET, respec-
tively, although the difference is small. In contrast, the absolute value
of the bias total of SVA* is larger than that of CSSR.

4. Development of a new algorithm

4.1. Structure of a new algorithm

Fig. 4 shows the flow diagram of a cloud-screening algorithm for
SKYNET, developed in this study. It was designated as a cloud-screening
algorithm for diffuse and direct AODs (from SKYNET) (CSDD), which is
common to TVA and SVA for AERONET, but not to CSSR and ICSM for
SKYNET. CSDD starts with a spectral-variability test for AE > 0.3 or a
temporal-variability test otherwise. We noted spectral- and temporal-
variability tests for AERONET mainly because CSSR and ICSM cannot
deal with direct data. However, TVA* and SVA* in Table 1 reveal high
negative biases, indicating that they did not screen much cloudy data
based on the cloud cover. We presumed that the 2-min windows em-
ployed in TVA* and SVA* could not produce sufficient variability to
distinguish between clear-sky and cloudy data. Therefore, we adopted a

15-min window for the spectral-variability test; that is, the difference
between maximum and minimum AODs over a 15-min period was
checked with the 15-min criterion given by Kaufman et al. (2006). This
test differs from the original 15-min test performed in Kaufman et al.
(2006), which used the difference between the current AOD and the
next or previous one at ~15 min intervals. As mentioned earlier, we
tried that for SVA* but found it to be ineffective.

Compared to using the 15-min window for the spectral-variability
test, we used the 2-min window for the temporal-variability test, as in
TVA*, considering relatively small negative bias sum of TVA*. Table 2
presents the performance of screening cloudy data in each step of
CSDD. A high percentage of cloudy data removed by the spectral-
variability test indicates that the adoption of the 15-min window was
suitable. We presumed that a small number of cloudy data were re-
moved by the temporal-variability test because the number of data for
AE ≤ 0.3 was small, that is, 73 (0.7%) for diffuse data and 4,456
(13.9%) for direct data. Because of a larger portion of direct data for
AE ≤ 0.3, the percentage of cloudy data removed by the temporal-
variability test is higher for direct data than for diffuse data.

For data passing the spectral- and temporal-variability tests, we
checked the temporal smoothness of the data. Similar tests have been
conducted using an index D (first derivatives difference) for data in a
day (Smirnov et al., 2000), the standard deviation (σ) over a 10-min
period (Song et al., 2014), and the relative rate of AOD change per
minute (Giles et al., 2019). We used the coefficient of variation (σ di-
vided by the mean) to check the smoothness of data, and accepted data
when the coefficient of variation over a 10-min period was ≤0.10. The
percentages of cloudy data removed by the smoothness test are 7.6% for
diffuse data and 12.3% for direct data in Table 2.

Table 2 shows that 76.4% of diffuse data and 54.9% of direct data
were accepted as clear-sky data. Summing diffuse and direct data,
40.0% was removed as cloudy data. The flow diagram in Fig. 4 was
constructed in a way to reduce the bias total and deviation in Table 1.
The lengths of the time windows for the tests and the coefficient of
variation for the smoothness test were chosen in the same way.

Fig. 2. Comparison of frequency distributions of
data points from diffuse and direct radiation under
clear-sky and cloudy conditions distinguished based
on the cloud cover from the Seoul synoptic station.
The numbers of data points under clear-sky and
cloudy conditions are 7,569 and 2,289, respectively,
for diffuse radiation and 16,668 and 15,326, re-
spectively, for direct radiation. Note that the color
scale is logarithmic to show the variations in the
frequencies.
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However, Table 1 was prepared by using the cloud cover from the Seoul
synoptic station, which is located about 12 km north of the study site
(Fig. 1). To examine the validity of using the cloud cover at a different
location, Table S1 was prepared by using the cloud cover from the
Suwon synoptic station, which is about 21 km south of the study site.
Despite the distance between two synoptic stations, biases and devia-
tions in Tables 1 and S1 are very similar; differences in the bias total
range from −0.5% to 1.1%, while those in the deviation range from
0.4% to 1.6% (Table S2). This reveals that differences in the cloud cover
between the study site and synoptic stations are small and that our
approach to reduce the bias total and deviation in Table 1 is

appropriate.
The distributions of biases in the frequency of cloudy data from

CSDD compared to that based on the cloud cover from the Seoul sy-
noptic station are shown in Fig. S1. The bias totals and deviations of
cloudy data frequencies from CSDD are listed in Table 3. The statistics
for AE > 0.3 are provided separately to compare them with those from
SVA* in Table 1. In comparison with Table 1, the absolute value of the
bias total is substantially reduced particularly for diffuse data. Only the
deviation for direct data is increased compared to that from TVA*. The
absolute value of the negative bias sum is mainly reduced, indicating
that much cloudy data, which was not screened by the selected

Fig. 3. Distributions of biases in the frequency of cloudy data from selected algorithms compared to that based on the cloud cover from the Seoul synoptic station
(Fig. 2b and d). TVA* and SVA* are modified TVA and SVA, respectively, for skyradimeter. The bias of frequency for SVA* was calculated for AE > 0.3, because SVA
is applicable to those data (Kaufman et al., 2006). Note that AE was calculated for 870 and 500 nm instead of using 870 and 440 nm in Kaufman et al. (2006).
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algorithms in Table 1, was screened by CSDD. However, the positive
bias sum is somewhat increased, because some clear-sky data was also
screened by CSDD.

As for Table S1, Table S3 was prepared by using the cloud cover
from the Suwon synoptic station. Although important parameters of
CSDD were determined to reduce the bias total and deviation in Table 1
(based on the cloud cover from the Seoul synoptic station), the values in
Table S3 are similar to those in Table 3 and differences between the two
are small in Table S4.

4.2. Cloud-detection statistics

Up to now, we have examined the performance of the algorithm in
terms of biases in optical properties based on the cloud cover, because
many studies have attempted to obtain information on aerosol char-
acteristics by using a large amount of data from long-term

measurements of optical properties. However, when the study period is
not long enough or the amount of data is not large, identifying the
cloud contamination for each datum is important, because aerosol
characteristics could be obscured by the inclusion of cloudy data or
exclusion of clear-sky data individually. Therefore, we examined whe-
ther cloud detections by the algorithm agreed with those by collocated
lidar observations in each case.

We distinguished four groups from “A” to “D” as shown in Fig. 5.
“A” indicates that the algorithm judged clear-sky data for lidar ob-
servations to be cloud-contaminated, whereas “B” indicates that both
the algorithm and lidar judged data to be cloud-contaminated. We
defined three parameters—the accuracy, probability of detection
(POD), and false detection rate (FDR)—, which concepts were taken
from the verification statistics used to evaluate the air quality forecasts
(United States Environmental Protection Agency, 2003).

The statistics of cloud detections by algorithms compared to those
by lidar observations are summarized in Table 4. For diffuse data, SVA*
and CSSR work better than TVA* and ICSM, showing higher accuracy
and lower FDR. However, PODs of SVA* and CSSR are lower, as ex-
pected from higher absolute values of negative bias sums (meaning that
much cloudy data was not screened) in Table 1. Similar results are

Table 1
Bias total and deviation of cloudy data frequencies from selected algorithms
compared to those based on the cloud cover from the Seoul synoptic station.

Diffuse AODsa Direct AODsb

TVA* SVA*,c CSSR ICSM TVA* SVA*,c

Positive bias sum 2.8% 1.1% 2.0% 1.4% 3.4% 0.9%
Negative bias

sum
−10.6% −16.8% −16.0% −12.1% −7.2% −18.0%

Bias total −7.8% −15.7% −14.0% −10.7% −3.8% −17.2%
Deviation 13.4% 17.9% 18.0% 13.5% 10.7% 18.9%

a Percentage of the total number of diffuse data before cloud screening.
b Percentage of the total number of direct data before cloud screening.
c Calculated from the data for AE > 0.3.

Direct and diffuse AODs
in a day

Temporal-variability test 
(Smirnov et al. 2000)

Cloud-contaminated data

Spectral-variability test
(Kaufman et al., 2006)

Temporal-smoothness test using 
the coefficient of variation

Clear-sky data

AE870/500 > 0.3
Yes No

Fig. 4. Flow diagram of a cloud-screening algorithm for diffuse and direct AODs
from SKYNET (CSDD).

Table 2
Performance of screening cloudy data in each step of CSDD.

Diffuse AODs Direct AODs

Clear-skya Cloudyb Clear-sky Cloudy

Total number before CSDD 9,858 (100.0) 31,994 (100.0)
Spectral-variability test 7,709 (78.2) 2,149 (92.4) 20,413 (63.8) 11,581 (80.3)
Temporal-variability test 7,708 (78.2) 1 (0.0) 19,353 (60.0) 1,060 (7.3)
Smoothness test 7,531 (76.4) 177 (7.6) 17,572 (54.9) 1,781 (12.3)
Total number after CSDD 2,327 (100.0) 14,422 (100.0)

a Number of clear-sky data after each step. The figure in the parentheses indicates a percentage of the total number of data before applying CSDD.
b Number of cloudy data screened by each step. The figure in the parentheses indicates a percentage of the total number of cloudy data screened by CSDD.

Table 3
Bias total and deviation of cloudy data frequencies from CSDD compared to
those based on the cloud cover from the Seoul synoptic station.

Diffuse AODsa Direct AODsb

All AE > 0.3 All AE > 0.3

Positive bias sum 5.1% 5.1% 5.4% 6.1%
Negative bias sum −4.8% −4.4% −8.3% −3.3%
Bias total 0.4% 0.7% −2.8% 2.8%
Deviation 9.9% 9.6% 13.7% 9.4%

a Percentage of the total number of diffuse data before cloud screening.
b Percentage of the total number of direct data before cloud screening.

Fig. 5. Definition of parameters used in the statistical analysis of cloud detec-
tions by algorithms compared to those by collocated lidar observations.
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found for direct data in Table 4. SVA* with a higher absolute value of
the negative bias sum in Table 1 shows higher accuracy and lower POD,
but in this case, FDR of SVA* is slightly higher than that of TVA*.

A sun-and-sky scanning radiometer, CE 318 (Cimel Electronique) of
AERONET measured direct and diffuse radiation at the study site
(Seoul_SNU) for one and a half years from Jan. 2012 to July 2013,
compared with the three-year study period of Jan. 2012 to Dec. 2014.
We calculated the statistics of cloud detections for direct data (version 3
AOD) using level 1.0 and 1.5 data sets. Whereas only cloudy data were
removed from level 1.0 through cloud screening to obtain level 1.5 in
version 2, anomaly data due to instrument malfunction were also re-
moved in version 3 as part of quality control after cloud screening
(Giles et al., 2019). In other words, clear-sky data classified by the cloud
screening algorithm can be discarded during the instrument quality
control procedures, which means that a part of clear-sky data (Giles
et al. (2019) estimated ~6% for worldwide AERONET sites during
1993–2018) fell into the cloudy data category shown in Fig. 5. Thus, if
we distinguish the data removed only by cloud screening from level 1.5
data set, a part of the cloudy data, “A” and “B”, should be reassigned to
the clear-sky category, “C” and “D”, respectively. This will reduce “A”
and “B” and increase “C” and “D”. As a result, accuracy and FDR will
either increase or decrease depending on the rate of change from “A” to
“C” and “B” to “D”, while POD decreases. Therefore, the accuracy and
FDR in Table 4, calculated from level 1.0 and 1.5 data sets without
considering the removal of data due to instrument malfunction, could
represent approximate values; however, POD should be regarded as an
upper limit.

Table 4 shows that POD and FDR of AERONET are similar to those
of TVA* for direct data with slightly lower POD and higher FDR. Note
that, different from existing algorithms, AERONET exhibits similarly
high POD with TVA* despite higher accuracy. However, considering
that POD of AERONET is an upper limit, it likely decreases, and the
difference in POD between AERONET and TVA* becomes larger than
that shown in Table 4. Compared to SVA*, AERONET has slightly
higher accuracy and low FDR, while POD is significantly higher al-
though the difference in POD can reduce with decreasing POD of
AERONET. We could not calculate the statistics of cloud detections for

diffuse data, because only level 1.5 data were available for inversion
products of AERONET.

As shown in Table 4, the statistics of CSDD are generally comparable
to those of AERONET. The increase in POD is remarkable even for
diffuse data although the accuracy is slightly lowered and FDR is in-
creased in comparison with the other three algorithms except TVA*. It
is worthy of note that CSSR, using additional global irradiance data,
exhibits higher accuracy and much lower FDR. For direct data, CSDD
works better than TVA* and SVA* with higher accuracy and lower FDR
than TVA*, and higher POD and lower FDR than SVA* for AE > 0.3.
Compared to AERONET, the accuracy is lowered, POD is slightly higher
(while the difference can increase with decreasing POD of AERONET),
but FDR is lowered.

It was mentioned earlier that useful lidar data were biased to spe-
cific months and hours due to inherent limitation in the solar zenith
angle. On the other hand, the cloud cover was available for the entire
period of the skyradiometer measurement, and its variations between
the study site and synoptic stations were revealed small in Tables S1 to
S4. Thus, the statistics of cloud detection by the algorithms were
compared to those by the cloud cover from the Seoul and Suwon sy-
noptic stations in Tables S5 and S6, respectively. Unlike Table 4, in
which the comparison results differed by parameter, CSDD mostly
outperforms other algorithms for all three parameters, because CSDD
was constructed to minimize the differences between the optical
properties from the algorithm and those based on the cloud cover from
the synoptic station. Compared to AERONET, CSDD still shows higher
POD, but is accompanied by higher accuracy and lower FDR, resulting
in a better performance than Table 4. As in Tables S2 and S4, Tables S5
and S6 using the cloud cover from the Seoul and Suwon synoptic sta-
tions, respectively, were similar.

5. Summary and conclusions

We developed a cloud-screening algorithm for both direct and dif-
fuse AODs from SKYNET (CSDD) using skyradiometer data collected at
the Seoul National University (SNU) site for the three years 2012–2014.
CSDD starts with a spectral-variability test for AE > 0.3 or a temporal-
variability test otherwise. The key element of CSDD was the spectral-
variability test over a 15-min period for AE > 0.3. Summing diffuse
and direct data, 82.0% of cloudy data was removed by this test. Overall,
CSDD eliminated 40.0% of the original data as being cloud-con-
taminated.

We attempted to minimize the differences between the optical
properties of cloudy data (and clear-sky data as well) based on the
cloud cover and those from the algorithm. We found that CSDD could
substantially reduce the absolute value of the bias total by removing
much cloudy data that had not been removed by the existing algo-
rithms. However, the positive bias sum was somewhat increased be-
cause some clear-sky data was screened as well. We also examined the
performance of CSDD in terms of cloud detection statistics compared to
lidar observations for the solar zenith angle less than 30°. The statistics
of CSDD were comparable to those of AERONET estimated for direct
data. As the removal efficiency of cloudy data increased, POD for dif-
fuse data was improved to the level of direct data although the accuracy
was lowered and FDR was increased compared to other existing algo-
rithms.

Despite the performance of CSDD described above, it should be
noted that CSDD was developed using data at a single site over three
years. Meteorology and aerosol characteristics vary by site and by
period, which can alter the CSDD performance. Further analyses using
data from various sites and periods are warranted to use CSDD at
worldwide SKYNET sites.

Acknowledgements

This study was supported by the Korea Meteorological

Table 4
Statistics of cloud detectionsa,b by new and existing algorithms compared to
those by lidar observations for the solar zenith angle less than 30°.

(a) Existing algorithms

Diffuse AODs Direct AODs

TVA* SVA*,c CSSR ICSM TVA* SVA*,c

Accuracy 72.2% 80.9% 85.3% 78.0% 59.0% 67.1%
POD 55.8% 27.0% 41.0% 67.3% 84.4% 55.5%
FDR 63.9% 53.4% 28.6% 54.4% 54.8% 57.7%

(b) CSDD and AERONETd.

Diffuse AODs Direct AODs

CSDD CSDD

All AE > 0.3 All AE > 0.3 AERONET

Accuracy 74.2% 74.9% 66.2% 66.9% 70.8%
POD 79.9% 84.0% 84.1% 90.5% 83.3%
FDR 58.5% 59.0% 49.2% 55.2% 55.4%

a See Fig. 5 for the definition of the statistical parameters.
b The number of lidar observations is 3,662 for diffuse AODs and 17,201 for

direct AODs. The number of direct AODs from AERONET is 839.
c Calculated using the data for AE > 0.3.
d For one and a half years from Jan. 2012 to July 2013 in comparison with

the 3-year study period from 2012 to 2014.

Y. Choi, et al. Atmospheric Research 243 (2020) 104997

7



Administration Research and Development Program under the Grant
KMIPA 2015-6010, the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (NRF-
2018R1C1B6008004), and the Hankuk University of Foreign Studies
Research Fund. We are grateful to B.-J. Sohn for maintaining the
SKYNET site at the Seoul National University during the study period.
We also thank anonymous reviewers for precise and valuable comments
that greatly improved the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.atmosres.2020.104997.

References

Arola, A., Eck, T.F., Kokkola, H., Pitkänen, M.R.A., Romakkaniemi, S., 2017. Assessment
of cloud-related fine-mode AOD enhancements based on AERONET SDA product.
Atmos. Chem. Phys. 17, 5991–6001. https://doi.org/10.5194/acp-17-5991-2017.

Campanelli, M., Estelles, V., Smyth, T., Tomasi, C., Martìnez-Lozano, M.P., Claxton, B.,
Muller, P., Pappalardo, G., Pietruczuk, A., Shanklin, J., Colwell, S., Wrench, C., Lupi,
A., Mazzola, M., Lanconelli, C., Vitale, V., Congeduti, F., Dionisi, D., Cardillo, F.,
Cacciani, M., Casasanta, G., Nakajima, T., 2012. Monitoring of Eyjafjallajökull vol-
canic aerosol by the new European Skynet Radiometers (ESR) network. Atmos.
Environ. 48, 33–45. https://doi.org/10.1016/j.atmosenv.2011.09.070.

Choi, Y., Ghim, Y.S., 2017. Assessment of the clear-sky bias issue using continuous PM10
data from two AERONET sites in Korea. J. Environ. Sci. 53, 151–160.

Christopher, S.A., Gupta, P., 2010. Satellite Remote Sensing of Particulate Matter Air
Quality: the Cloud-Cover Problem. J. Air Waste Manage. Assoc. 60, 596–602.

Collaud Coen, M., Andrews, E., Asmi, A., Baltensperger, U., Bukowiecki, N., Day, D.,
Fiebig, M., Fjaeraa, A.M., Flentje, H., Hyvärinen, A., Jefferson, A., Jennings, S.G.,
Kouvarakis, G., Lihavainen, H., Lund Myhre, C., Malm, W.C., Mihapopoulos, N.,
Molenar, J.V., O’Dowd, C., Ogren, J.A., Schichtel, B.A., Sheridan, P., Virkkula, A.,
Weingartner, E., Weller, R., Laj, P., 2013. Aerosol decadal trends – part 1: In-situ
optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys. 13,
869–894.

Eck, T.F., Holben, B.N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H.B., Chatenet, B.,
Gomes, L., Zhang, X.-Y., Tsay, S.-C., Ji, Q., Giles, D., Slutsker, I., 2005. Columnar
aerosol optical properties at AERONET sites in central eastern Asia and aerosol
transport to the tropical mid-Pacific. J. Geophys. Res.-Atmos. 110 (D6), D06202.
https://doi.org/10.1029/2004JD005274.

Eck, T.F., Holben, B.N., Reid, J.S., Arola, A., Ferrare, R.A., Hostetler, C.A., Crumeyrolle,
S.N., Berkoff, T.A., Welton, E.J., Lolli, S., Lyapustin, A., Wang, Y., Schafer, J.S., Giles,
D.M., Anderson, B.E., Thornhill, K.L., Minnis, P., Pickering, K.E., Loughner, C.P.,
Smirnov, A., Sinyuk, A., 2014. Observations of rapid aerosol optical depth en-
hancements in the vicinity of polluted cumulus clouds. Atmos. Chem. Phys. 14,
11633–11656. https://doi.org/10.5194/acp-14-11633-2014.

Giles, D.M., Sinyuk, A., Sorokin, M.G., Schafer, J.S., Smirnov, A., Slutsker, I., Eck, T.F.,
Holben, B.N., Lewis, J.R., Campbell, J.R., Welton, E.J., Korkin, S.V., Lyapustin, A.I.,
2019. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database
– automated near-real-time quality control algorithm with improved cloud screening
for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech.
12, 169–209. https://doi.org/10.5194/amt-12-169-2019.

Gobbi, G.P., Kaufman, Y.J., Koren, I., Eck, T.F., 2007. Classification of aerosol properties
derived from AERONET direct sun data. Atmos. Chem. Phys. 7, 453–458. https://doi.
org/10.5194/acp-7-453-2007.

Hamill, P., Giordano, M., Ward, C., Giles, D., Holben, B., 2016. An AERONET-based
aerosol classification using the Mahalanobis distance. Atmos. Environ. 140, 213–233.
https://doi.org/10.1016/j.atmosenv.2016.06.002.

Hashimoto, M., Nakajima, T., Dubovik, O., Campanelli, M., Che, H., Khatri, P., Takamura,
T., Pandithurai, G., 2012. Development of a new data-processing method for SKYNET
sky radiometer observations. Atmos. Meas. Tech. 5, 2723–2737.

Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan,
J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998.
AERONET—A Federated Instrument Network and Data Archive for Aerosol
Characterization. Remote Sens. Environ. 66, 1–16.

Holben, B.N., Tanré, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb,
W.W., Schafer, J.S., Chatenet, B., Lavenu, F., Kaufman, Y.J., Castle, J.V., Setzer, A.,
Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N.T., Pietras, C.,
Pinker, R.T., Voss, K., Zibordi, G., 2001. An emerging ground-based aerosol clima-
tology: aerosol optical depth from AERONET. J. Geophys. Res. 106, 12067–12097.
https://doi.org/10.1029/2001jd900014.

Kaufman, Y.J., Remer, L.A., Tanre, D., Rong-Rong, L., Kleidman, R., Mattoo, S., Levy,
R.C., Eck, T.F., Holben, B.N., Ichoku, C., Martins, J.V., Koren, I., 2005. A critical
examination of the residual cloud contamination and diurnal sampling effects on
MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens. 43,
2886–2897.

Kaufman, Y.J., Gobbi, G.P., Koren, I., 2006. Aerosol climatology using a tunable spectral
variability cloud screening of AERONET data. Geophys. Res. Lett. 33, L07817.

Khatri, P., Takamura, T., 2009. An Algorithm to Screen Cloud-Affected Data for Sky
Radiometer Data Analysis. J. Meteorol. Soc. Jpn. 87, 189–204.

Kim, S.-W., Yoon, S.-C., Kim, J., Kim, S.-Y., 2007. Seasonal and monthly variations of
columnar aerosol optical properties over East Asia determined from multi-year
MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ.
41 (8), 1634–1651.

Kim, S.-W., Berthier, S., Raut, J.C., Chazette, P., Dulac, F., Yoon, S.C., 2008. Validation of
aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-
based lidar in Seoul, Korea. Atmos. Chem. Phys. 8, 3705–3720.

Kim, Y., Kim, S.-W., Kim, M.-H., Yoon, S.-C., 2014. Geometric and optical properties of
cirrus clouds inferred from three-year ground-based lidar and CALIOP measurements
over Seoul, Korea. Atmos. Res. 139, 27–35.

Levy, R.C., Remer, L.A., Kleidman, R.G., Mattoo, S., Ichoku, C., Kahn, R., Eck, T.F., 2010.
Global evaluation of the Collection 5 MODIS dark-target aerosol products over land.
Atmos. Chem. Phys. 10, 10399–10420. https://doi.org/10.5194/acp-10-10399-2010.

Li, J., Carlson, B.E., Dubovik, O., Lacis, A.A., 2014. Recent trends in aerosol optical
properties derived from AERONET measurements. Atmos. Chem. Phys. 14,
12271–12289. https://doi.org/10.5194/acp-14-12271-2014.

Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., Holben, B., 1996. Use of sky
brightness measurements from ground for remote sensing of particulate polydisper-
sions. Appl. Opt. 35, 2672–2686.

Nakajima, T., Sekiguchi, M., Takemura, T., Uno, I., Higurashi, A., Kim, D., Sohn, B.J., Oh,
S.-N., Nakajima, T.Y., Ohta, S., Okada, I., Takamura, T., Kawamoto, K., 2003.
Significance of direct and indirect radiative forcings of aerosols in the East China Sea
region. J. Geophys. Res. Atmos. 108. https://doi.org/10.1029/2002JD003261.

Nakajima, T., Yoon, S.-C., Ramanathan, V., Shi, G.-Y., Takemura, T., Higurashi, A.,
Takamura, T., Aoki, K., Sohn, B.-J., Kim, S.-W., Tsuruta, H., Sugimoto, N., Shimizu,
A., Tanimoto, H., Sawa, Y., Lin, N.-H., Lee, C.-T., Goto, D., Schutgens, N., 2007.
Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and
a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res. 112,
D24S91. https://doi.org/10.1029/2007jd009009.

Russell, P.B., Bergstrom, R.W., Shinozuka, Y., Clarke, A.D., DeCarlo, P.F., Jimenez, J.L.,
Livingston, J.M., Redemann, J., Dubovik, O., Strawa, A., 2010. Absorption Angstrom
Exponent in AERONET and related data as an indicator of aerosol composition.
Atmos. Chem. Phys. 10, 1155–1169. https://doi.org/10.5194/acp-10-1155-2010.

Smirnov, A., Holben, B.N., Eck, T.F., Dubovik, O., Slutsker, I., 2000. Cloud-screening and
quality control algorithms for the AERONET database. Remote Sens. Environ. 73,
337–349.

Song, H.-J., Sohn, B.-J., Chun, H.-W., Chun, Y., Lee, S.-S., 2014. Improved cloud screening
method for the analysis of sky radiometer measurements and application to asian
dust detection. J. Meteorol. Soc. Jpn. 92A, 167–183.

United States Environmental Protection Agency, 2003. Guidelines for developing an air
quality (Ozone and PM2.5) forecasting program. EPA-456/R-03-002.

Wang, Z., Sassen, K., 2001. Cloud type and macrophysical property retrieval using mul-
tiple remote sensors. J. Appl. Meteorol. 40, 1665–1682.

Yoon, J., Pozzer, A., Chang, D.Y., Lelieveld, J., Kim, J., Kim, M., Lee, Y.G., Koo, J.H., Lee,
J., Moon, K.J., 2016. Trend estimates of AERONET-observed and model-simulated
AOTs between 1993 and 2013. Atmos. Environ. 125 (Part A), 33–47. https://doi.org/
10.1016/j.atmosenv.2015.10.058.

Zhang, W., Gu, X., Xu, H., Yu, T., Zheng, F., 2016. Assessment of OMI near-UV aerosol
optical depth over Central and East Asia. J. Geophys. Res. Atmos. 121, 382–398.
https://doi.org/10.1002/2015JD024103.

Zhang, Y., Yu, H., Eck, T.F., Smirnov, A., Chin, M., Remer, L.A., Bian, H., Tan, Q., Levy,
R., Holben, B.N., Piazzolla, S., 2012. Aerosol daytime variations over North and
South America derived from multiyear AERONET measurements. J. Geophys. Res.
Atmos. 117. https://doi.org/10.1029/2011JD017242.

Y. Choi, et al. Atmospheric Research 243 (2020) 104997

8

https://doi.org/10.1016/j.atmosres.2020.104997
https://doi.org/10.1016/j.atmosres.2020.104997
https://doi.org/10.5194/acp-17-5991-2017
https://doi.org/10.1016/j.atmosenv.2011.09.070
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0015
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0015
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0020
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0020
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0025
https://doi.org/10.1029/2004JD005274
https://doi.org/10.5194/acp-14-11633-2014
https://doi.org/10.5194/amt-12-169-2019
https://doi.org/10.5194/acp-7-453-2007
https://doi.org/10.5194/acp-7-453-2007
https://doi.org/10.1016/j.atmosenv.2016.06.002
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0055
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0055
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0055
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0060
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0060
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0060
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0060
https://doi.org/10.1029/2001jd900014
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0070
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0070
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0070
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0070
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0070
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0075
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0075
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0080
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0080
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0085
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0085
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0085
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0085
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0090
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0090
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0090
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0095
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0095
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0095
https://doi.org/10.5194/acp-10-10399-2010
https://doi.org/10.5194/acp-14-12271-2014
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0110
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0110
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0110
https://doi.org/10.1029/2002JD003261
https://doi.org/10.1029/2007jd009009
https://doi.org/10.5194/acp-10-1155-2010
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0130
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0130
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0130
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0135
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0135
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0135
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0140
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0140
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0145
http://refhub.elsevier.com/S0169-8095(19)30854-3/rf0145
https://doi.org/10.1016/j.atmosenv.2015.10.058
https://doi.org/10.1016/j.atmosenv.2015.10.058
https://doi.org/10.1002/2015JD024103
https://doi.org/10.1029/2011JD017242

	Development of a cloud-screening algorithm for direct and diffuse AODs from the Skyradiometer Network
	Introduction
	Methods
	Instruments
	Determination of clear-sky and cloudy conditions

	Optical properties of aerosols from selected algorithms
	Optical properties for clear-sky and cloudy conditions based on cloud cover
	Comparison of biases in optical properties from selected algorithms

	Development of a new algorithm
	Structure of a new algorithm
	Cloud-detection statistics

	Summary and conclusions
	Acknowledgements
	mk:H1_14
	mk:H1_15
	Supplementary data
	References




