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Abstract: This study presents an improved wet scavenging process for particles in air quality
modeling, focusing on the Korean Peninsula. New equations were incorporated into the air quality
chemical transport model (CTM) to enhance the simulation of particulate matter (PM) concentrations.
The modified air quality CTM module, utilizing size-dependent scavenging formulas, was applied to
simulate air quality for April 2018, a month characterized by significant precipitation. Results showed
that the modified model produced more accurate predictions of PM10 and PM2.5 concentrations
compared to the original air quality CTM model. The maximum monthly average differences
were 5.46 µg/m3 for PM10 and 2.87 µg/m3 for PM2.5, with pronounced improvements in high-
concentration regions. Time-series analyses for Seoul and Busan demonstrated better agreement
between modeled and observed values. Spatial distribution comparisons revealed enhanced accuracy,
particularly in metropolitan areas. This study highlights the importance of incorporating region-
specific, size-dependent wet scavenging processes in air quality models. The improved model shows
promise for more accurate air quality predictions, potentially benefiting environmental management
and policy-making in the region. Future research should focus on integrating more empirical data to
further refine the wet scavenging process in air quality modeling.

Keywords: wet scavenging; aerosol; particulate matter; air quality modeling; air quality chemical
transport model (CTM)

1. Introduction

Atmospheric aerosols are significantly impacted by wet scavenging processes [1].
The removal of ultrafine particles from the atmosphere through wet scavenging is cru-
cial for their transport and dispersion [2]. Consequently, comprehending and accurately
modeling the mechanisms of wet scavenging for ultrafine particles has become essential
for implementing three-dimensional air quality prediction models [3]. Wet scavenging
is a primary mechanism that eliminates particulate matter (PM) due to precipitation. As
raindrops descend during precipitation events, they absorb and remove substances from
the atmosphere [4]. The efficiency of wet scavenging depends on various factors, including
the distribution, intensity, duration of precipitation, concentration, and spatial distribution
of atmospheric pollutants [5]. When it rains, raindrops collect and remove PM through
inertial impaction, interception, and Brownian diffusion [6]. Collection coefficients define
these processes based on droplet collisions, where the total number of collisions refers to
how often raindrops collide with PM over an area equivalent to the effective cross-sectional
area of the raindrops [7].
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Numerous studies have been conducted to measure the scavenging effects of pre-
cipitation [8–13]. In a study conducted in East Asia on Sado Island, Japan, researchers
measured the atmospheric and precipitation concentrations of sulfur dioxide (SO2) and
sulfate (SO4

2−) to investigate the scavenging coefficients of sulfur compounds due to long-
range transport. The results indicated that the scavenging coefficient could be expressed
as λ = aPb, where P represents the precipitation intensity. Parameter a was approximately
10−4, and parameter b ranged from 0.67 to 0.76. Recently, a study in Lanzhou, China,
examined the removal characteristics of atmospheric aerosols by measuring air pollution
and precipitation [14]. It was found that aerosols in the 10–1000 nm range have distinct
coefficients depending on rain and snowfall, with the intensity and duration of snowfall
having a significant impact. A study using high-resolution data on atmospheric and soluble
inorganic salts in precipitation collected during the summer focused on the scavenging
coefficient under low cloud conditions [15]. The study concluded that different scavenging
coefficients should be used for different ions in chemical transport models, considering the
variations in chemical composition. However, due to the complexity of air quality models,
a simplified approach is necessary [16].

Various modeling approaches have been employed to simulate wet scavenging pro-
cesses in different environmental contexts, with significant variations in methodologies
across studies [17]. For instance, traditional models often simplify the wet scavenging
process by utilizing constants or first-order equations that fail to capture the complexity
of aerosol and raindrop interactions accurately [18]. More advanced models, such as the
Community Multiscale Air Quality (CMAQ) model, have incorporated size-dependent
scavenging coefficients that allow for a more nuanced representation of the physical pro-
cesses involved. These models differentiate between aerosol particle sizes and precipitation
types, leading to more accurate predictions of particulate matter (PM) concentrations.
Comparative analyses between different models, such as those utilizing Lagrangian and
Eulerian frameworks, have demonstrated the critical need for enhancing wet scavenging
mechanisms to improve the accuracy of air quality simulations [19].

Recent advancements in wet scavenging research have focused on refining the pa-
rameters used in chemical transport models (CTMs) to better reflect real-world condi-
tions [20–22]. Innovations include the development of empirical formulas that account
for the size distribution of aerosols and raindrops, as well as the intensity and duration of
precipitation events. These improvements have led to more accurate simulations of aerosol
removal processes, particularly under varying meteorological conditions [23]. Studies
have highlighted the importance of using size-resolved scavenging coefficients derived
from in situ measurements, which have been shown to significantly enhance the predictive
capabilities of models like CMAQ [7]. Furthermore, these advancements are increasingly
being integrated into air quality models to improve their application in environmental
management and policy-making.

Comprehensive research on wet scavenging processes is needed to better understand
this phenomenon [24]. This study aims to evaluate the factors affecting wet scavenging and
improve the modeling process by accurately formulating the transport and dispersion of
particles in the atmosphere. Applying the wet scavenging mechanism to three-dimensional
air quality prediction models will enhance the accuracy of particle concentration predictions
in real environments [25]. Thus, by analyzing wet scavenging results and applying three-
dimensional air quality prediction models, this study aims to provide more accurate and
reliable information on ultrafine particles, contributing to environmental management and
policy-making.

This study tries to apply the scavenging coefficient equation based on rainfall intensity
using PM concentration from air quality monitoring stations collected over 5 years from
12 cities across the Korean Peninsula [26]. The research involves updating air quality pre-
diction models by incorporating rainfall data to derive scavenging coefficients for multiple
locations. Additionally, model simulations and analyses were conducted specifically for
April 2018, when rainfall intensity reached its peak, to further explore this relationship.
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2. Methods

Wet scavenging is the natural process by which airborne particles, such as cloud
droplets, fog droplets, rain, and snow, are removed from the atmosphere and deposited
onto the Earth’s surface [27]. This phenomenon is also known by other terms, including
wet deposition, wet removal, washout, and rainout. In this research, the term “scavenging”
will be primarily used. Rainout typically describes the scavenging of particles within
clouds, while washout refers to the scavenging of particles below clouds by falling rain or
snow [28]. The removal of PM through wet scavenging can be divided into three stages:
(1) the contact between aerosols and condensed water, (2) the adsorption of aerosols, and
(3) the transportation of aqueous particles to the Earth’s surface [29]. It is important to note
that some wet scavenging processes are reversible, as evaporating raindrops can generate
new aerosols even though they had previously scavenged particles under clouds [30]. Wet
scavenged pollutants interact with various physical stages and phenomena at different
scales, involving numerous steps and variables, including diverse forms such as cloud
droplets, rain, snow, ice, hail, and sleet, each with distinct size resolutions [31]. Furthermore,
the complexities of this process are further increased due to the presence of four media: air,
cloud droplets, aerosol particles, and raindrops, with specific types of pollutants existing
within each phase [32].

2.1. Theoretical Analysis of Wet Scavenging

The likelihood of collisions between raindrops and particles is contingent upon the
particle size and their relative positioning [18]. Predicting the exact trajectories of particles
is a complex fluid dynamics problem [33]. Wet scavenging equations utilize the concept of
collision efficiency, analogous to the collision efficiency between raindrops. The collision
efficiency, E, denotes the fraction of aerosols with diameter dp that are collected within
the collision volume of a raindrop with diameter Dp [34]. This collision efficiency serves
as a correction factor to account for the interactions between descending raindrops and
atmospheric aerosols [35].

For the aerosol size distribution n(dp, t), below-cloud scavenging can be understood as
a first-order approximation of how particles are transferred into raindrops. The governing
equation for the wet removal of particles is given by the following:

−
∂n

(
dp, t

)
∂t

= Λ
(
dp

)
n
(
dp, t

)
(1)

as described by [36]. In this equation, Λ(dp) is the scavenging coefficient. This relation-
ship illustrates that the removal rate of particles from the atmosphere via raindrops is
proportional to both the scavenging coefficient and the concentration of those particles.
The effectiveness of this process is influenced by particle size and their spatial distribution
within the atmosphere.
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)
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)
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As shown in Equation (2), the scavenging coefficient Λ(dp) represents the efficiency
with which aerosols of diameter dp are removed by precipitation characterized by a raindrop
size distribution ND. It is assumed that all raindrops in the precipitation have the same
diameter Dp and a number concentration ND.

By definition, the collision efficiency E is the ratio of the total number of collisions
between raindrops and aerosols to the total number of aerosol particles in the effective cross-
sectional area of the raindrop. In the standard CMAQ model, E is typically assumed to be 1,
indicating that all particles within the geometric cylindrical volume traversed by the falling
drop are collected [37]. However, experimental data often show that the actual scavenging
efficiency is less than 1, as it accounts for the degree to which particles are scavenged,
depending on various factors. Our model improvements are based on these realistic
assumptions, refining the CMAQ model to better reflect the actual collision efficiencies
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observed in empirical studies. While the standard model uses E = 1, our enhancements
consider the variability in collision efficiency observed in experiments, thereby improving
the model’s predictive accuracy.

Using the expression for collision efficiency (E), the wet removal rate for precipitation
events, or the scavenging coefficient (Λ), can be estimated. This calculation is based
on information about the aerosol size distribution below the cloud and the raindrop
size distribution. The Λ represents the efficiency with which aerosols of diameter dp are
removed by precipitation with a raindrop size distribution of Dp. Here, it is assumed that
all raindrops in the precipitation have the same diameter Dp and a number concentration
ND. The only relevant variable for aerosols of diameter Dp is the collision efficiency (E).

Λ
(
dp

)
= a × Rb (3)

Moreover, the wet scavenging coefficient can be simplified using rainfall intensity
(R) as shown in Equation (3). Rainfall intensity is utilized as a representative variable for
removal by precipitation, and the wet Λ can be derived using air pollution monitoring data.
Here, a and b are constants determined from previous studies, used to estimate the wet
scavenging coefficient from rainfall intensity.

2.2. Modification of the Wet Scavenging Algorithm in Chemical Transport Models (CTMs)

To validate the study results, we aimed to apply the newly derived Λ equation from
previous studies using a three-dimensional air quality chemical transport model (CTM).
Accurately simulating wet scavenging processes in a model necessitates a comprehensive
understanding of atmospheric meteorology [38]. However, implementing these complex
wet scavenging processes in air quality models is fraught with difficulties. Most existing
air quality models simplify the wet scavenging process by precipitation using constants or
first-order equations [28]. This simplification arises because fully formulating all aerosol
scavenging processes during precipitation is both challenging and computationally in-
efficient [19]. Notably, in the widely used three-dimensional air quality model CMAQ
(The Community Multiscale Air Quality Modeling System), aerosol removal processes
are considered one-dimensionally without distinguishing between raindrops and cloud
droplets [39]. The scavenging mechanism in CMAQ targets aerosols within the accumula-
tion mode (0.1–1 µm) and coarse mode (>10 µm), assuming complete absorption by clouds
and rain. Since particles in the Aitken mode are aggregated into the accumulation mode,
only the accumulation and coarse modes are considered [40]. However, this assumption is
inaccurate from a physical scavenging mechanism perspective, especially for below-cloud
scavenging processes that must account for the size distribution of raindrops and aerosols.

Existing studies have simplified the precipitation-driven aerosol removal process, and
the scavenging formula proposed by [8] utilizing empirically determined Λ has been widely
adopted. This method employs rainfall intensity and empirically derived coefficients to
simulate the scavenging of aerosols by precipitation in both Lagrangian and Eulerian air
quality models. Consequently, there is a need to enhance the wet scavenging mechanism
by improving the Λ, which is a critical component of the scavenging formula.

Figure 1a depicts the original mechanism used in the Community Multiscale Air
Quality (CMAQ) model, where the wet scavenging process is represented using a simplified,
scavenging time variable, τwash. In contrast, Figure 1b illustrates the modified mechanism
introduced in this study, which incorporates a size-dependent collision efficiency [41].
While Figure 1a assumes that E remains constant and independent of particle size dp,
Figure 1b demonstrates how E varies as a function of dp, reflecting the influence of diffusion,
interception, and impaction processes. Meanwhile, the right panel introduces a revised
equation that explicitly accounts for particle diameter (dp), underscoring its critical role in
determining scavenging efficiency.
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(b) Size-dependent scavenging coefficient.

The scavenging time (τwash) in the original CMAQ model, as represented in Figure 1a,
is treated as a constant value [26]. However, in the modified approach shown in Figure 1b,
τwash is dynamically influenced by particle diameter (dp). Under the condition where Dd is
fixed, the collision efficiency E in Figure 1a remains constant, while in Figure 1b, E exhibits
variation as a function of the particle diameter dp. This enhanced approach better reflects
the complexity of the wet scavenging process, providing a more accurate representation of
particle removal during precipitation events.

Additionally, the modified equation with collision efficiency (E), as presented in
Figure 1b, considers both rainfall intensity and particle characteristics with Λ, offering a
significant improvement over the original CMAQ model, which bases its calculations solely
on precipitation duration.

The Λ values using Equation (3) were specifically derived from this extensive dataset,
as reported in [26]. Data from 28,888 h of precipitation recorded between 2015 and 2019
were analyzed. To ensure the representativeness of Λ, the median value was chosen over
the mean, as it better reduces the influence of outliers and extreme values that could
otherwise skew the results. As shown in Figure 2, the distribution of the scavenging
coefficients (Λ) for PM2.5 across 12 cities in Korea exhibits a significant number of extreme
values due to the nature of the real-world measurement data. The mean value is heavily
influenced by these outliers, making it less reliable for representing central tendency. In
contrast, the median provides a more stable and accurate measure of central tendency in
the presence of such extreme values. A preliminary comparison between the mean and
median values further supports this choice, as the median consistently provided more
stable and reliable coefficients.
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2.3. Chemical Transport Models (CTMs)

The study employed the Community Multiscale Air Quality (CMAQ) model version
5.1 for the simulation. The research concentrated on April 2018, a month characterized by
significant precipitation based on observational data. To enhance the simulation’s accuracy,
a pre-run period from 21 March to 31 March was included. Meteorological input data
were generated using the Weather Research and Forecasting (WRF) Model, while emission
data were sourced from the KORUS-AQ version 5. This modeling approach is a widely
accepted methodology in air quality modeling, as it reflects realistic atmospheric conditions
to predict pollutant concentrations. The modeling conditions are described in detail in
Table 1. The simulation utilized stable physical settings for the meteorological and air
quality modeling components.

Table 1. CMAQ modeling options and details.

Horizontal Grid 273 (COLS) × 204 (ROWS)

Resolution 15 km

Domain
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Modeling period Pre-running: 26 March∼1 April, 2018 (7 days)
Main-running: 1 April∼30 April, 2018 (30 days)

CMAQ version v5.1

CMAQ chemical option SARPC-07tc
AERO6 (6th generation CMAQ aerosol module)

Also, Table 2 outlines the scenarios used in this study, comparing different sets of
scavenging coefficients (Λ). The MOD scenario uses Λ values derived from air quality
measurements in Korean cities, providing region-specific accuracy [26]. The CMAQ module
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was modified by applying the previously derived Λ to simulate pollutant levels across the
Korean Peninsula. This allows for a comparative analysis between the original model and
the improved model with the modified module [42], offering insights into the enhancements
achieved. LITERATURE refers to the use of Λ from the published literature and GEOS
refers to the use of Λ from Geos-chem measurements. The LITERATURE scenario employs
more generalized Λ values from broader observational studies, which may not capture
local conditions as precisely [43]. The GEOS scenario uses Λ from the Geos-chem model
within the Goddard Earth Observing System (GEOS), offering a global perspective but
potentially less local relevance. This comparison highlights the importance of using locally
derived data to improve the accuracy of air quality models for the Korean Peninsula.

Table 2. Scenario names and details employed in this study.

Simulation Name Details

BASE CMAQ default version

MOD Modified wet deposition algorithms
with new scavenging coefficients (Λ) of PM from this study

LITERATURE [43] Modified wet deposition algorithms
with Λ from [43]

GEOS Modified wet deposition algorithms
with Λ from Geos-chem measurements.

3. Results
3.1. Results of Simulation CTM

This study incorporated newly derived scavenging coefficient equations to modify the
CMAQ model’s wet scavenging module, enabling a more comprehensive three-dimensional
air quality simulation for the East Asian region. The adjusted module, based on the
newly developed size-dependent scavenging formulas, produced simulation results that
differentiated between model outputs using particle size-specific scavenging coefficients for
PM10 and PM2.5. The simulated regional distributions of monthly average concentrations
for PM10 and PM2.5 using the modified CMAQ model are presented in Figure 2. This
approach facilitated a more detailed and nuanced representation of the wet scavenging
processes, which are critical for accurately modeling air quality dynamics in the East
Asian region.

The domain-wide average differences were found to be 5.46 µg/m³ for PM10 and
2.87 µg/m³ for PM2.5 when comparing the modified module with the original model, with
these differences being consistently observed across the domain rather than localized to spe-
cific regions. The original CMAQ model employed a single, uniform scavenging coefficient
that did not account for the influence of aerosol particle size on the wet scavenging process.
In contrast, the revised scavenging formulas developed in this study utilize size-dependent
Λ. This refined approach recognizes that the efficiency of particle removal by raindrops is
strongly dependent on the size distribution of both the aerosols and the falling raindrops.

The mechanism implemented in the modified CMAQ model reduces the deposition
amount by multiplying the scavenging efficiency, which is a function of particle size, with
the deposition amount. This leads to an overall increase in the simulated particulate matter
concentrations compared to the original model, as the size-dependent Λ better captures the
complex interplay between rainfall characteristics and aerosol properties.

The Λ in the modified model is derived based on rainfall intensity, indicating that
the scavenging efficiency is significantly influenced by the temporal variation in rainfall
intensity. Consequently, the monthly average values of PM concentrations may exhibit
a different pattern compared to the total accumulated rainfall over the same period, as
the wet scavenging process is more responsive to the temporal dynamics of precipitation
rather than just the total amount. This underscores the importance of incorporating size-
dependent scavenging formulas that account for the influence of both rainfall characteristics
and aerosol properties for accurate air quality modeling.
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Additionally, there may be limitations due to variables not accounted for in the model,
such as temporal variations and spatial movement, which can also affect the results. The use
of a scavenging formula based on rainfall intensity means that higher rainfall intensity leads
to a more significant change in the scavenging coefficient, reflecting the simulation results.

3.2. Comparison with Observational Data

The reliability of the applied wet scavenging module was evaluated through a com-
prehensive comparative analysis using observational data. This study examined the con-
centration results from the model grid as well as the time-series analysis for an air quality
monitoring station in Seoul, which are presented in Figure 3. This figure illustrates the
time-series analysis of PM2.5 concentrations and modeled precipitation in Seoul (Mapo) for
April 2018, comparing the original CMAQ model (BASE) with three modified scenarios:
MOD, LITERATURE, and GEOS. The results indicate that the GEOS scenario, represented
by the blue line, deviates most significantly from the observed data, highlighting the lim-
itations of using global-scale scavenging coefficients for local air quality modeling. The
LITERATURE scenario (green line) shows a better fit, though it still falls short in capturing
local conditions accurately.
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In contrast, the MOD scenario (orange line), which uses region-specific scavenging
coefficients derived from in situ measurements across Korean cities, aligns most closely with
the observed PM2.5 values (blue circles). This suggests that the MOD scenario effectively
captures the local meteorological and pollution dynamics, providing the most accurate
representation among the scenarios. The comparison underscores the importance of using
locally derived data in air quality models to improve predictive accuracy and highlights
the potential limitations of relying on generalized or global-scale models like GEOS for
regional applications.

Additionally, this study investigated the relationship between the modeled precip-
itation and the corresponding concentration differences within the grid domain for the
same time period, as shown in Figure 4. This supplementary analysis provided further
insights into the model’s capacity to capture the dynamics between meteorological factors
and pollutant concentrations, further validating the superiority of the MOD scenario in
reflecting local atmospheric conditions.
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The time-series analysis spanning the entire study period was carried out for both
the Seoul and Busan locations, as shown in Figures 5 and 6, respectively. Compared
to the observational data, the modified modeling module exhibited a greater level of
agreement with the measured values. This improved agreement suggests that the enhanced
wet scavenging process incorporated into the revised CMAQ module better captures the
real-world dynamics of particulate matter removal by precipitation. The more detailed
representation of the scavenging process, which accounts for the influence of rainfall
intensity and aerosol particle size, appears to provide a closer match to the observed PM
concentrations at these monitoring sites. This indicates that the modified model is better
able to simulate the spatiotemporal variations in pollutant levels.
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The modified model exhibits marked improvements in capturing the spatial patterns
of PM concentrations compared to the original model, as shown in Figure 7, which com-
pares the simulation results from the original and modified CMAQ models against the
measured results from air quality monitoring stations nationwide. By incorporating the
size-dependent Λ, the revised CMAQ module is better able to simulate the complex in-
terplay between rainfall characteristics and aerosol properties, leading to a more accurate
representation of the wet scavenging process. This improved accuracy is particularly evi-
dent in high-concentration areas, such as the metropolitan region encompassing Seoul and
Incheon, where the modified model significantly reduces the underestimations observed
in the original model. The enhanced spatial distribution of simulated PM concentrations
showcases the potential of the developed scavenging formulas to better reflect the real-
world dynamics of air pollution and its removal by precipitation, which is crucial for
effective air quality management and policy development in the region.
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To validate the accuracy improvements achieved through the new wet scavenging
coefficients, the simulated concentration values were compared against empirical air quality
measurements. As shown in Figure 8, the monthly average concentrations of PM10 and
PM2.5 in Seoul for April 2018 were calculated from observational data. The figure presents
the observed values, the original model simulations, and the simulations utilizing the
modified Λ. In Figure 9, it is evident that while all models generally underestimated the
observations, the modified models exhibited some corrections, resulting in closer agreement
with the measured values. Notably, the agreement for PM2.5 was significantly enhanced.
These findings demonstrate the promising potential of the developed wet scavenging
process in air quality modeling, which has shown the capability to improve the accuracy of
simulation results [38].
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Table 3 presents performance statistics comparing the BASE and MOD scenarios
against observed data in Seoul (April 2018). The metrics include Mean Bias (MB), Mean
Absolute Gross Error (MAGE), Mean Normalized Bias Error (MNBE), Root Mean Square
Error (RMSE), and Index of Agreement (IOA). MB reflects the average difference between
modeled and observed values, with negative values indicating underestimation. MAGE
quantifies the average magnitude of errors regardless of their direction, while MNBE
expresses bias as a percentage of the observed values. RMSE measures the standard
deviation of prediction errors, and IOA gauges the overall agreement between model
predictions and observations, with values closer to 1, indicating better agreement.

Table 3. Performance statistics by scenarios compared with observation data in Seoul (April 2018).

MB MAGE MNBE RMSE IOA

BASE −18.62 20.16 −38.76 32.33 0.379
MOD −12.15 19.65 −2.50 32.26 0.347

The analysis reveals that the MOD scenario outperforms the BASE scenario. Specif-
ically, the MOD scenario shows a reduced MB from −18.62 to −12.15 and a substantial
improvement in MNBE from −38.76% to −2.50%, indicating a significant reduction in
model bias. While RMSE remains nearly unchanged, the MOD scenario provides a more
accurate and reliable representation of observed data, as evidenced by these metrics.

4. Discussion

This study has demonstrated the effectiveness of incorporating empirical, size-dependent
wet scavenging coefficients into the CMAQ model for improved air quality predictions in the
Korean Peninsula. The modified model showed significant improvements in simulating PM10
and PM2.5 concentrations, particularly in high-concentration regions and during precipitation
events. The enhanced spatial distribution of simulated PM concentrations showcases the
potential of the developed scavenging formulas to better reflect the real-world dynamics
of air pollution and its removal by precipitation, which is crucial for effective air quality
management and policy development in the region.

Moreover, this study’s findings emphasize the importance of refining air quality
modeling techniques to accurately capture the dynamics of pollutant behavior in the
atmosphere. The ability of the modified CMAQ model to simulate these processes more
accurately highlights the potential benefits of continued model refinement. Future research
should focus on the derivation of more localized scavenging coefficients, the expansion of
the model’s application to different geographical areas, and its use in local-scale modeling.
These efforts will continue to enhance the accuracy and applicability of air quality models,
ultimately contributing to improved air quality and public health.

Finally, this study has revealed the significance of size-dependent scavenging coef-
ficients in accurately representing wet deposition processes. This finding suggests that
future air quality models should consider particle size distribution more carefully when
simulating wet scavenging processes. By advancing our understanding of pollutant behav-
ior and refining modeling techniques, this research contributes to more effective air quality
management and environmental stewardship in the Korean Peninsula and beyond.

5. Conclusions

The incorporation of empirical data and the modified CMAQ module in this study has
provided valuable insights into the characteristics of the scavenging process, particularly in
the Korean Peninsula. The simulation results indicate significant potential for improvement
in modeling PM2.5 concentrations, with differences of up to 26.7 µg/m3 lower than the
original model on a monthly average. As more empirical data are collected, the model
is expected to better reflect the scavenging characteristics specific to the Korean Penin-
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sula, highlighting the importance of continuous data collection and model refinement in
improving air quality predictions.

This study not only provides a framework for enhancing the modeling of air quality
and meteorological conditions in the Korean Peninsula but also sets the stage for continued
advancements in the field. The potential synergies between air quality modeling, empirical
data collection, and policy development underscore the need for ongoing interdisciplinary
research efforts to address the complex challenges of air pollution.

While this study primarily focused on regional-scale simulations, the methodology
developed here holds significant potential for application at the local scale. Adapting
the model for finer resolution simulations could involve modifying input parameters and
enhancing the spatial and temporal resolution of meteorological and emissions data. By
deriving more detailed, locally specific scavenging coefficients, the model could capture
the unique regional characteristics that influence wet scavenging processes. This would
enhance the model’s predictive capabilities for specific areas, offering more accurate and
reliable forecasts at the local level. Such adaptations would be invaluable for local air
quality management and policy-making, ensuring that interventions are based on the most
precise data available.

Furthermore, the limitations of the current study, including the need for more extensive
validation across diverse meteorological conditions and geographical locations, provide
direction for future research. The potential application of this improved model to local-scale
simulations presents an exciting avenue for further investigation, promising advancements
in air quality modeling and public health outcomes.
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