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• Developed an ensemble model to quan
tify SO2 and CO2 emissions using top- 
down methods.

• Validated model with strong SO2 corre
lations to CleanSYS monitoring system.

• Increased in CO2 with decreasing SO2 
emission despite stable electricity 
production.

• Demonstrated the application of 
ensemble method for regulatory 
compliance.
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A B S T R A C T

A reliable ensemble averaging method was developed to quantify sulfur dioxide (SO2) and carbon dioxide (CO2) 
emission rates from the Taean and Dangjin power plants in South Korea. This method integrated mass balance 
and Gaussian footprint approaches while accounting for individual uncertainties and deviations arising from 
distinct modeling assumptions and measurement variability. Eighteen representative spiral flights in 2022 (9 
cases) and 2023 (9 cases) were conducted to evaluate emission rates and revealed several optimal conditions for 
achieving accurate quantification, including a small spiral radius with a fine vertical resolution under unstable 
atmospheric conditions. Validation of the estimated SO2 emission rate revealed comparable correlation co
efficients (R > 0.72) between the two methods and the real time automatic telemonitoring system (CleanSYS). 
The ensemble averaging method mitigated the sensitivity of the Gaussian footprint to the effects of meteoro
logical conditions and high uncertainty in the mass balance, which resulted in an improved correlation of the 
estimated SO2 emission rate with that measured by the CleanSYS (R > 0.78). When the same approach was 
applied, the CO2 emission estimates from both methods showed a high correlation (R > 0.78) and confirmed the 
robustness of our ensemble averaging method. Although there was no significant difference between monthly 
electricity production in 2022 (October and November) and 2023 (May, October and November), the SO2 
emission rates decreased by 37 % and 29 % compared with the ensemble averaging method and CleanSYS, 
respectively; however, CO2 emission rates increased by approximately 62 % at Taean and 83 % at Dangjin. This 
could be attributed to the use of carbon-intensive fuel sources, more intensive operations during research flight, 
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and the desulfurization process, which aimed to reduce SO2 emissions and release CO2 as a byproduct. This study 
highlights the broad application of our ensemble averaging method for emission monitoring and regulatory 
compliance, particularly for CO2, when real-time emission monitoring systems are absent.

1. Introduction

Coal-fired power plants are major contributors to atmospheric 
pollution, releasing significant quantities of sulfur dioxide (SO2) and 
carbon dioxide (CO2) (Grant et al., 2021; Kim et al., 2023). SO2 is a key 
precursor to acid rain, severely impacts ecosystems, degrades water 
quality, and poses significant health risks through respiratory issues 
(Cape et al., 2003; Orellano et al., 2021). CO2, which accounts for 88.5 
% of total greenhouse gas emissions in South Korea (Jeon et al., 2010), is 
the main contributor to global warming and the associated climate im
pacts. According to the Clean Air Policy Support System (CAPSS) in
ventory in Korea (Choi et al., 2020), 81 % of the emitted SO2 is 
attributed to point sources, especially coal-fired power plants, ac
counting for 31 % of these emissions. Additionally, coal combustion 
produces significantly more CO2 per unit of heat energy than other fossil 
fuels do, making coal a major contributor to greenhouse gas emissions 
(Jeon et al., 2010). Prior to May 2017, the energy policy in South Korea 
included expanded coal-fired power generation, contributing to nearly 
50 % of energy production due to its cost-effectiveness compared with 
other energy sources (Park et al., 2023). In response to the growing 
concerns about global warming, the Korean government implemented 
the 9th Basic Plan for Power Demand and Supply (2020− 2030) to 
reduce CO2 emissions by 28.5 % and decommission 56 coal-fired power 
plants by 2030. However, as demands for global energy have increased 
and coal continues to be a key energy source, the management of 
emissions from coal-fired power plants is vital for improving air quality 
and implementing climate change mitigation strategies (Cassia et al., 
2018; Köne and Büke, 2010; Szulejko et al., 2017).

Bottom-up approaches, with estimates based on reported activities 
and emission factors, are often limited by inaccurate identification of 
emission sources and neglect the consideration of time-dependent fluc
tuations (Elguindi et al., 2020; Kurokawa et al., 2013; McDuffie et al., 
2020; Qu et al., 2022). These methods are frequently hindered by un
certainties in both activity and emission factor data, which leads to 
potential discrepancies of up to 30 to 40 % in China (Qu et al., 2022) and 
15 to 30 % in South Korea (Wong et al., 2024a), in emission inventories 
compared with in-situ measurements and/or top-down atmospheric 
estimates. As a result, top-down methodologies, which are based on 
measurements to estimate emission rates, have become comprehensive 
methods for the validation of targeted emission sources and estimate 
improvements.

Satellites have been extensively utilized in previous studies to 
monitor air quality and estimate emissions due to their broad spatial 
coverage and ability to detect large-scale emission patterns over 
extended periods at regional to global scales (Carn et al., 2007; Davis 
et al., 2019; Duncan et al., 2014; Frins et al., 2011; Kuhlmann et al., 
2021; McLinden et al., 2012; Qu et al., 2022; Sanchez et al., 2019; Theys 
et al., 2015). However, despite these advantages, emission rates from 
satellite observations face notable limitations that affect their accuracy 
and applicability for certain emission sources, struggle to capture short- 
term (hourly to daily) variations in emission rates, and may be limited 
by spatial resolution and cloud cover. Open-path remote sensing is less 
effective for modeling elevated emissions from high-level point sources, 
such as stacks at coal-fired power plants, due to geometric and line-of- 
sight constraints. Although airborne observations can be costly and 
resource intensive to obtain, they can provide a distinct advantage for 
accurately quantifying emissions, particularly from large point sources 
(e.g., power plants and livestock). In addition, airborne measurements 
provide real-time information that can capture the high spatial and 
temporal variability of emissions with high precision by overcoming the 

limitations of satellite observations (Cambaliza et al., 2014; Fiehn et al., 
2020; Gordon et al., 2015). This airborne approach is particularly 
valuable in monitoring emissions from small-scale facilities or detecting 
unreported sources in areas where real time automatic telemonitoring 
systems (CleanSYS), which are typically installed only at large-scale 
industrial sites, are unavailable.

In this context, previous studies have shown that top-down meth
odologies can be used to validate or improve current emission in
ventories, which enables more accurate environmental monitoring, 
enhances our understanding of emission patterns, allows progress to
ward emission reduction goals, and facilitates the development of 
mitigation strategies (Table 1). The mass balance and Gaussian footprint 
approaches are essential methods among the top-down approaches. The 
mass balance method is widely used for estimating reasonable emission 
rates for various pollutants (SO2, CO2, CH4, CO, and NOₓ) from various 
emission sources, such as oil sand production (Gordon et al., 2015), coal 
mining and industrial activities (Fiehn et al., 2020), oil and gas facilities 
(Fried et al., 2020), and power plants (Wong et al., 2024b). Although the 
accuracy of the mass balance method is highly sensitive to meteoro
logical conditions and influenced by the spatial coverage and the reso
lution of measurements, it can be effectively utilized in various 
applications when certain measurement conditions are satisfied due to 
its inherently simple and practical methods. In addition, the Gaussian 
footprint approach can provide realistic results in cases with localized 
sources (refineries, ships, power plants, and urban industrial sources) 
and can be used to identify spatial emission patterns and the interannual 
variability of pollutant sources (Brioude et al., 2011). Gaussian models 
are particularly useful for simulating complex source locations and 
dispersion dynamics but are sensitive to uncertainties in input param
eters (Mao et al., 2022). To leverage the advantages of both approaches, 
the ensemble averaging method (hereafter, ensemble method) not only 
mitigates biases inherent in individual methods but also provides a 
comprehensive assessment of uncertainty due to different modeling 
assumptions.

With the goal of developing a top-down ensemble method for 
comprehensive assessments of emission rates with high precision, a key 
aspect of this study is the validation of SO2 and CO2 emission rates from 
coal-fired power plants in bottom-up emission inventories, for which 
CO2 is not a target species in the CleanSYS system. Hence, to ensure the 
robustness of the mass balance and Gaussian footprint approaches pro
posed by Kim et al. (2023), the estimated SO2 emission rates were 
validated by comparison with CleanSYS data. Consequently, the same 
validation approach was applied to estimate CO2 emission rates and 
leveraged a cross-validation process. Finally, by investigating the dif
ferences in the estimated SO2 and CO2 emission rates from eighteen 
cases between 2022 and 2023, we verified the accuracy of the bottom-up 
emission inventories and analyzed the causes of different trends in the 
SO2 and CO2 emission rates. This study not only provides accurate SO2 
and CO2 emission estimates from power plants but also contributes to 
the broader field of atmospheric science by demonstrating the efficacy of 
two top-down methodologies for improving emission inventories.

2. Materials and methods

2.1. Coal-fired power plants in the study area

This study focuses on emission rates from the Taean (36.90◦ N, 
126.24◦ E) and Dangjin (37.06◦ N, 126.51◦ E) coal-fired power plants, 
which are located approximately 30 km apart in the western coastal 
region of Taean, South Korea (Fig. 1). Given that these power plants are 
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located in coastal regions, stack plumes are frequently observable over 
background marine concentrations, particularly under daytime sea- 
breeze conditions (Chang et al., 2022; Geddes et al., 2021; Souri et al., 
2023). The Taean and Dangjin power plants are among the largest coal- 
fired power plants in the world in terms of power generation capacity 
(6.1 GW yr− 1 for Taean and 6.0 GW yr− 1 for Dangjin), contributing 
significantly to pollutant emissions (Grant et al., 2021; Nassar et al., 
2021). The Taean power plant consists of ten power units with 150 m 
stack heights, which emit a total of 3.50 Gg of SO2 according to CAPSS 
2021 and approximately 25.8 Tg of CO2 according to the Emission 
Database for Global Atmospheric Research (EDGAR; Crippa et al., 2023) 
v8.0 in 2022. Similarly, the Dangjin power plant features eight power 
units with 150 m stacks and two power units with 208 m stacks, which 
emitted a total of 4.05 Gg of SO2 according to CAPSS 2021 and 27.5 Tg 
of CO2 according to EDGARv8.0 in 2022. Notably, the emission condi
tions (e.g., exit gas temperature, exit gas velocity, stack height, and stack 
diameter) for each stack are continuously monitored in real time via 
CleanSYS. According to the national standard for stack monitoring, the 

uncertainty in SO2 emission measurements must be kept below 20 % 
relative to the daily emission limit value (ELV) of 48 ppm. We assumed a 
20 % relative error in the CleanSYS emission rates. This assumption was 
based on the uncertainties observed in CleanSYS SO2 measurements, 
where the errors compared with the ELV ranged from 3.5 % to 5.4 %, 
and the percentage errors relative to the reference methods varied from 
8.9 % to 21 % (Kim et al., 2023).

2.2. Airborne measurements

Airborne measurements were conducted via a modified Beechcraft 
KingAir-C90GT aircraft (Seo et al., 2019) equipped with advanced 
instrumentation for the real-time monitoring of SO2 and CO2 concen
trations. SO2 was measured using the 43iQTL analyzer (Thermo Scien
tific, USA), which provides high sensitivity (0.2 ppb) and a rapid 
response (<10 s), whereas CO2 concentrations were monitored with the 
Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; LGR 
GLA331-MCEA1, Los Gatos Research, Inc., USA) analyzer, which is 

Table 1 
Comparisons between top-down and bottom-up methods conducted in various studies.

Gas Study area Method Bottom-up inventory Comparison with bottom-up Reference

CH4 Northwest Europe Inverse model UNFCCCa, EDGARbv4.0 Top-down inverse modeling results from 2001 to 2006 
were 40 % and 21 % higher than UNFCCC and EDGARv4.0, 
respectively.

(Bergamaschi 
et al., 2010)

NOx, 
CO, 
CO2

Los Angeles, USA; 
South Coast Air Basin 
(SoCAB)

Mass balance, 
Inverse model

NEIc 2005, Vulcan 2002 and 2005, 
CARBd 2008

CO and NOx posterior estimates were 43 %, 32 % lower for 
LA and 37 % and 27 % lower for SoCAB compared to NEI 
2005. CO was 15 % higher compared to CARB 2008. CO2 

posterior estimates were 31–44 % and 15–38 % higher in 
LA and SoCAB compared to Vulcan 2002 and 2005

(Brioude et al., 
2013)

CO2 Indianapolis, USA Mass balance EPA CEMSe Estimated results were overestimated but within the EPA 
uncertainty (29 %). One case was 60 % underestimated due 
to under-sampling

(Cambaliza 
et al., 2014)

CO2 Baltimore- 
Washington, USA

Mass balance EDGARv4.3.2, ACESfv1, FFDASgv2.2, 
ODIACh2018

All bottom-up inventories for fossil fuel CO2 emissions were 
15 % overestimated

(Ahn et al., 
2020)

NOx, 
SO2, 
CO

China, India Inverse model HTAPiv2 Estimated NOx emission rates were 21–26 % and 28 % 
lower in China and India. SO2 estimates were within 4 % 
difference in China but 39–61 % lower in India. Top-down 
CO estimates were 43–62 % and 25–38 % higher in China 
and India.

(Qu et al., 2022)

CH4 Global Inversion 
model

CEDSj, EDGARv4.3.2, GAINS 
ECLIPSEkv6, US EPAl 2012, FAOm, 
FINNov1.5, GFASpv1.3, GFEDqv4.1s, 
QFEDrv2.4r1

Median bottom-up estimate value from 2008 to 2017 were 
136 Tg yr− 1 higher than median top-down estimate value 
for total CH4 emission rates

(Hajny et al., 
2023)

SO2 Taean, South Korea Mass balance, 
Inverse model

CAPSSs 2017, TMSt SO2 emission rates estimated by mass balance and inverse 
method were 51 % and 90 % of TMS data and 58 % and 
101 % of CAPSS 2017, respectively.

(Kim et al., 
2023)

SO2, 
CO2

Taean, South Korea Mass balance CAPSS 2018, TMS Mass balance estimates of SO2 were 85 % and 129 % of 
TMS at Dangjin and Taean power plants. Dangjin, Taean, 
Hyundai, and Daesan estimates were 38 %, 60 %, 40 %, and 
67 % underestimated of the reported CAPSS 2018 emission 
rates, respectively.

(Wong et al., 
2024a)

a UNFCCC: United Nations Framework Convention on Climate Change.
b EDGAR: Emissions Database for Global Atmospheric Research.
c NEI: National Emission Inventory.
d CARB: California Air Resources Board.
e CEMS: Continuous Emission Monitoring System.
f ACES: Anthropogenic Carbon Emission System.
g FFDAS: Fossil Fuel Data Assimilation System.
h ODIAC: Open Data Inventory for Anthropogenic Cabon dioxide.
i HTAP: Hemispheric Transport of Air Pollution.
j CEDS: Community Emissions Data System.
k GAINS ECLIPSE: Greenhouse Gas and Air pollution Interactions and Synergies Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants.
l EPA: Environmental Protection Agency.
m FAO: Food and Agriculture Organization.
o FINN: Fire Inventory.
p GFAS: Global Fire Assimilation System.
q GFED: Global Fire Emissions Database.
r QFED: Quick Fire Emissions Dataset
s CAPSS: Clean Air Policy Support System.
t TMS: Tele-Monitoring System.
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known for its high response time (<10 s with an external pump) and 
precision (1σ, 1 s: ±0.2 ppm). Both instruments operate at a high tem
poral resolution of 1 Hz, enabling the capture of the spatial variability of 
emissions.

In conjunction with the gas analyzers, the AIMMS-30 (Aircraft In
tegrated Meteorological Measurement System; Aventech Research, Inc., 
Canada) system was employed to collect detailed meteorological data 
for interpreting data from airborne observations. The AIMMS-30 is a 
comprehensive airborne meteorological system that integrates multiple 
sensors to measure wind vectors (U, V, W), temperature, humidity, and 
pressure, which are particularly important for understanding plume 
dispersion. The accuracies of the meteorological parameters are ±0.4 m 
s− 1 for wind speed, ±2◦ for wind direction, ±0.3 ◦C for temperature, 
and ± 2 % for humidity. The pressure sensor provides an accuracy of 
±0.1 hPa, with pressure an important parameter for determining alti
tude and understanding atmospheric layering. The AIMMS-30 system 
provides these data at a 1 Hz frequency, ensuring synchronization with 
the gas analyzers; thus, a high-resolution temporal characterization of 
the pollution plume can be obtained to perform comprehensive and 
detailed assessments of emission dynamics.

2.3. Mass balance approach

The mass balance method evaluates emissions by considering the 
inflow and outflow of mass through the boundaries of a defined box that 
surrounds the emission sources. This method assumes that the net flux 
originates entirely from within the enclosed box. To estimate the mass 
flux, horizontal fluxes at all grid points, with a vertical resolution of 9.5 
m along the z-axis and 140 m along the y-axis, are projected onto a two- 
dimensional plane for each flight. A kriging algorithm is applied to 
interpolate the observed concentrations between downwind transects of 
the trace gas plume, enabling mass flux calculations through this plane. 
The differences between the mean influx and outflux are then computed 
to derive the emission rates for the stack sources within the box.

Given the high elevations of stack emission plumes, linear extrapo
lation was employed to estimate SO2 and CO2 concentrations from the 
lowest airborne observation altitudes (~400 m) to the ground level. For 
SO2, the minimum concentration for each spiral was assumed to be at 
ground level, whereas for CO2, background levels were determined via 
the lowest one percentile of airborne observations for each flight. 
Notably, the effect of differences in percentiles might be negligible 
because significant differences in estimated emission rates between two 
different background concentrations were not observed (<10 %). These 
background concentrations were then linearly extrapolated from the 
ground to the lowest airborne measurements, allowing for an accurate 
calculation of the flux within the control volume. A key advantage of the 
mass balance method is that it does not require prior values or external 
input parameters, such as stack characteristics or detailed 

meteorological data. This flexibility makes it highly suitable for esti
mating emission rates directly from observational data. In this study, we 
applied a modified version of the top-down mass balance method pro
posed by Kim et al. (2023), which enhances the ability to capture 
emissions with minimal dependency on external parameters.

The uncertainty in the mass balance approach was rigorously 
calculated by considering the potential errors associated with each input 
variable, including gas concentration (12 % relative uncertainty), wind 
speed (0.4 m s− 1 absolute uncertainty based on device specifications), 
and the angle of attack (θ) with an absolute uncertainty of 0.04. The 
combined uncertainty was evaluated with the propagation of uncer
tainty method.

2.4. Gaussian footprint approach

The inverse Gaussian footprint method allows for the calculation of 
emission sensitivity by establishing the relationship between emission 
rates (g s− 1) at receptor points and pollutant concentrations (ppbv) at 
source locations, as outlined by Seibert and Frank (2004) and Stohl et al. 
(2009). This approach generates SO2 and CO2 footprint fields (ppbv s 
g− 1) via a backward Gaussian plume model, where inverted wind data 
from specific sampling locations serve as the initial wind field. To 
accurately simulate model dispersion, both horizontal and vertical 
dispersion coefficients were derived as functions of downwind distance, 
accounting for variations across different atmospheric stability classes. 
These stability classes were determined on the basis of solar radiation 
and wind speed measurements during the sampling period (Table 2) and 
using the Pasquill classification scheme (Kahl and Chapman, 2018). The 
effective stack height, which was calculated using the Pasquill classifi
cation and the Briggs equation (Briggs, 1969) and considering buoyancy 
and momentum effects, was used as the starting point for plume 
dispersion in the Gaussian model.

The Bayesian regression framework used in this study, with monthly 
emission rates of SO2 from CAPSS 2021 and CO2 from EDGARv8.0 as 
prior inputs, was implemented through the Just Another Gibbs Sampler 
(JAGS) package in R (v.4.4.1), and this approach provides a robust 
method for estimating regression coefficients and quantifying their un
certainties. The priors are designed to reflect minimal prior assumptions 
while ensuring numerical stability during estimation. Using Markov 
Chain Monte Carlo (MCMC) sampling through the JAGS package, pos
terior distributions are generated for all parameters and offer a proba
bilistic representation of their likely values. The uncertainty in the 
Gaussian footprint approach is assessed through posterior summaries 
and includes mean estimates (central tendency), standard deviations 
(variability), and 95 % confidence intervals.

Additional data, such as meteorological conditions and stack-specific 
parameters, are essential for estimating emissions at observation points 
to accurately estimate concentrations from stacks. Tables S1 and S2 

Fig. 1. Geolocation of Taean (36.90◦ N, 126.24◦ E) and Dangjin (37.06◦N, 126.51◦E) coal-fired power plants in the western coastal region of South Korea. Taean and 
Dangjin power plants are approximately 1.5 km2 and 1.8 km2 in area, respectively. Comparison of the grid size used for ODIAC (yellow box) and EDGAR (red box) 
emission inventory with all flight routes (sky blue lines) conducted in this study. The images were obtained from Google Earth.
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summarize the conditions of the seven stacks associated with the ten 
power units at both the Taean and Dangjin power plants. All the stacks 
had heights of approximately 150 m, with diameters ranging from 5.4 to 
7.7 m. The gas exit velocities and temperatures were continuously 
monitored by the real-time CleanSYS system, with the exit temperatures 
from all the stacks approximately 50 ◦C higher than the surrounding 
ambient air.

In this study, we used the overall mean values as input parameters 
regardless of the stack number and measurement date instead of the 
hourly measured gas exit velocity and temperature for each stack. 
Because the differences between the two approaches could be neglected 
within <1 % for SO2 and 0.9 % for CO2, the use of the average gas exit 
velocity and temperature values can produce reliable estimates, 
although the Gaussian footprint model is well known to be sensitive to 
input parameters (Brioude et al., 2013; Kim et al., 2023; Mao et al., 
2022). Thus, this approach could provide a solution when it is difficult to 
obtain detailed information for all stacks on specific research flight days.

2.5. Ensemble method

Both the mass balance and Gaussian footprint methods provide an 
estimate of emission rates, but each estimate is associated with distinct 
variability or error due to various uncertainties (e.g., instrument accu
racy or sampling conditions) and differences in the modeling methods 
(e.g., assumptions regarding atmospheric dispersion). This study used 
the ensemble method by averaging emission estimates from the mass 
balance and Gaussian footprint methods without applying specific 
weighting factors. This approach was chosen to maintain consistency 
and avoid potential biases that could arise from each method. However, 
the uncertainty of the ensemble method (uensemble) was calculated to 
capture both individual uncertainties from each method and provide a 
comprehensive assessment of the overall reliability of the emission es
timates via Eqs. (1) and (2). 

uensemble =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Nmassu2
mass + NGaussianu2

Gaussian + Nmassd2
mass + NGaussiand2

Gaussian
Nmass + NGaussian

√

(1) 

x =
Nmassxmass + NGaussianxGaussian

Nmass + NGaussian
(2) 

where uensemble represents the standard deviation of the ensemble pre
dictions for emission rates considering the overall mean value (x), which 
is calculated by considering uncertainties from both the mass balance 

(umass) and Gaussian footprint (uGaussian) methods with certain sample 
sizes (Nmass and NGaussian). dmass and dGaussian represent the deviations of 
each method from the overall mean value as xmass − x and xGaussian − x, 
respectively.

2.6. Meteorological conditions during research flights

Table 2 provides a summary of the meteorological conditions for 
eighteen selected spiral flights during the campaigns in 2022 and 2023. 
The ground-level wind speed and solar radiation data were obtained 
from the Seosan station (36.78◦ N, 126.49◦ E), which is the nearest 
Automated Synoptic Observing System (ASOS) station operated by the 
Korea Meteorological Administration (KMA). For the airborne obser
vations in this study, the aircraft conducted circular flights around the 
power plant at 58 different altitudes ranging from approximately 
400–1200 m above sea level. These altitudes were carefully selected to 
intercept SO2 and CO2 plumes within an approximately 2 km radius 
from the stacks to ensure that the plumes retained their distinct patterns 
considering background levels while remaining below the boundary 
layer. For safety reasons, flight operations were restricted to altitudes 
above 350 m.

On the basis of Table 2, the atmospheric stability on the flight days in 
2022 and 2023 was predominantly classified as B or C, according to the 
Pasquill scheme, with only one flight day (S10D) classified as class D. 
These stability classes, indicative of moderate to slightly unstable at
mospheric conditions, were characterized by moderate solar radiation 
and wind speed levels that facilitated daytime heating and intensified 
local wind. As a result, the wind speeds at 400 to 450 m were generally 
higher than those at ground level, although the vertical dispersion 
observed was less pronounced than what would be expected under more 
unstable class A conditions. Notably, the number of research flights for 
estimating emission rates for SO2 (six for Taean and four for Dangjin) 
was smaller than that for CO2 (eight for Taean and ten for Dangjin) 
because of maintenance issues with the SO2 instrument.

2.7. Bottom-up CO2 emission inventories

In this study, we utilized the EDGAR emission inventory as the CO2 
prior dataset in the Gaussian footprint method. Specifically, we 
employed the EDGARv8.0 dataset, with a spatial resolution of 0.1◦ ×

0.1◦ and as one of the most recently updated global emission in
ventories, providing monthly emissions data for 2022. EDGAR is widely 
recognized for its global coverage and accuracy, with country-specific 

Table 2 
Summary of meteorological conditions and stability class for each spiral. The uncertainty associated with each estimate is indicated by the ± symbol, reflecting the 
quantified uncertainty bounds.

Date Spiral Location Wind speed (m s− 1) Solar radiation (MJ m− 2) Stability class

450 m Ground level

2022-10-12 S1T Taean 4.86 ± 0.60 3.12 ± 0.61 1.76 ± 0.51 C
S1D Dangjin 4.38 ± 0.35 3.12 ± 0.61 1.76 ± 0.51 B

2022-10-21 S2D Dangjin 4.41 ± 1.00 2.85 ± 0.60 1.60 ± 0.36 B
2022-10-25 S2T Taean 4.41 ± 0.77 3.83 ± 0.95 2.07 ± 0.69 C

S3D Dangjin 4.07 ± 1.04 4.35 ± 1.07 2.37 ± 0.73 B
2022-10-26 S4D Dangjin 3.09 ± 1.15 0.78 ± 0.49 0.83 ± 0.44 C

S5D Dangjin 2.24 ± 0.82 1.61 ± 0.69 1.48 ± 0.60 B
2022-11-02 S3T Taean 3.48 ± 0.91 0.23 ± 0.59 0.85 ± 0.45 C

S4T Taean 3.32 ± 1.12 2.16 ± 0.70 2.00 ± 0.67 C
2023-05-09 S5T Taean 6.05 ± 0.92 3.33 ± 0.63 2.88 ± 0.72 C
2023-05-10 S6T Taean 3.00 ± 0.32 0.95 ± 0.41 2.09 ± 0.64 B

S6D Dangjin 2.27 ± 0.78 0.84 ± 0.53 2.10 ± 0.63 B
2023-05-25 S7T Taean 2.41 ± 0.95 1.63 ± 0.61 1.84 ± 0.75 B

S7D Dangjin 4.35 ± 0.74 1.21 ± 0.61 2.56 ± 0.74 B
2023-10-18 S8D Dangjin 4.79 ± 0.74 3.56 ± 0.79 2.12 ± 0.62 B

S9D Dangjin 4.00 ± 0.99 3.56 ± 0.79 2.12 ± 0.64 B
2023-10-31 S10D Dangjin 5.11 ± 1.18 4.57 ± 0.85 1.86 ± 0.48 D
2023-11-08 S8T Taean 2.16 ± 0.63 1.73 ± 0.62 2.10 ± 0.51 B
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emissions derived from international activity data and emission factors 
(Crippa et al., 2023). For comparison with our estimated CO2 emission 
rates, we employed the Open-Source Data Inventory for Anthropogenic 
CO2 (ODIAC) Fossil Fuel CO2 emission dataset (Oda and Maksyutov, 
2015; accessed: 2024/09/05) from 2022, which was initially developed 
as part of the Greenhouse Gases Observing Satellite (GOSAT) project in 
Japan. ODIAC offers a fine spatial resolution of 1 × 1 km, allowing for 
high-resolution spatial assessments of emissions and particularly suit
able for analyzing emissions from localized point sources such as power 
plants. The spatial resolutions for both the EDGAR and ODIAC in
ventories, along with the flight routes used in this study, are displayed in 
Fig. 1. The uncertainty of both the EDGAR and ODIAC inventories was 
approximately 7.1 %, on the basis of global estimates from previous 
research (Oda and Maksyutov, 2011; Solazzo et al., 2021), which 
ensured consistency and robustness in comparing the emission rates 
derived from the Gaussian footprint method.

3. Results and discussion

3.1. Characteristics of the observed SO2 and CO2 plume structures

Spatially (vertical and horizontal) interpolated SO2 and CO2 con
centrations for Dangjin (S10D) and Taean (S8T), along with the 
observed sampling points, are shown in Fig. 2. By applying the kriging 
method, curtain plots can provide clearer insights into plume heights 
and complex structures. A distinct plume core was observed at multiple 
transects at altitudes less than ~600 m for both SO2 and CO2. The SO2 
concentrations in S8T were approximately four times higher than those 
in S10D, indicating significant variability in the dispersion of SO2 when 
considering the similar emission rates between the Taean and Dangjin 
power plants from CAPSS 2021 and CleanSYS (Table 3). The CO2 con
centrations exhibited a similar trend, with higher values also observed in 
S8T. Both flights were conducted in the afternoon, and the plumes were 
evenly distributed within the lower atmospheric layers, supporting the 
assumption of effective vertical mixing within the planetary boundary 
layer (PBL). These results emphasize that local meteorological 

Fig. 2. Curtain plots of mass balance approach for Dangjin S10D (upper) and Taean S8T (lower). The plots (a) and (c) are SO2, and plots (b) and (d) are CO2. 
Concentrations between observation points were interpolated using the kriging method, and distances were calculated from the north end of flight tracks in an 
anticlockwise direction along the x-axis.

Table 3 
Overall comparison of total emission rates of SO2 (kg h− 1) for Taean and Dangjin powerplant implemented by the mass balance and Gaussian footprint methods. The 
uncertainty associated with each estimate is indicated by the ± symbol, reflecting the quantified uncertainty bounds. TMS and CAPSS emission inventory for each 
location included for comparison.

Location Spiral Mass balance Gaussian footprint Ensemble TMSa CAPSS 2021b

Taean S1T 383 ± 232 404 ± 131 394 ± 189 490 ± 98
S2T 329 ± 117 394 ± 142 361 ± 134 351 ± 70
S3T 207 ± 91 341 ± 122 274 ± 127 386 ± 77
S4T 270 ± 87 337 ± 119 304 ± 110 386 ± 77
S5T 274 ± 239 240 ± 91 257 ± 181 362 ± 72
S8T 204 ± 112 232 ± 91 218 ± 103 250 ± 50
Mean 278 ± 146 325 ± 116 301 ± 141 371 ± 74 400 ± 116

Dangjin S1D 161 ± 93 284 ± 124 222 ± 126 285 ± 57
S3D 193 ± 45 336 ± 130 264 ± 121 355 ± 71
S5D 231 ± 79 360 ± 132 296 ± 126 357 ± 71
S10D 160 ± 86 117 ± 71 139 ± 82 216 ± 43
Mean 186 ± 76 274 ± 114 230 ± 114 303 ± 61 462 ± 134

a TMS uncertainty: 20 % (Kim et al., 2023).
b CAPSS uncertainty: 29 % (Kim and Jang, 2014).
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conditions can influence the distribution and intensity of emissions for 
both SO2 and CO2. In addition, the SO2 and CO2 concentrations gener
ally decreased along the background region over the Yellow Sea, where 
no dominant emission sources are located. However, increases in SO2 
and CO2 concentrations were observed at lower altitudes that were 
distinct from the main plume. These notable upwind concentrations at 
low altitudes most likely came from sea level sources such as ships. 
Although the mass balance model accounted for and subtracted inflow 
within the sampling columns, elevated background concentrations may 
increase the uncertainty associated with emission rates estimated using 
top-down approaches.

Fig. 3 shows an example of footprint contours for sampling positions 
corresponding to the maximum SO2 and CO2 concentrations observed 
during S10D and S8T spirals. During the flights, the meteorological 
conditions played a significant role in dispersing the plume; notably, the 
difference in wind speed between S10D and S8T was high. The footprint 
for S8T at low wind speeds (2.16 m s− 1 at 450 m and 1.73 m s− 1 at 
ground level) was widely distributed but well-defined and aligned 
perpendicularly to the stacks, even under unstable conditions (Class B). 
In contrast, the footprint for S10D at high wind speeds (5.11 m s− 1 at 
450 m and 4.57 m s− 1 at ground level) was dispersed with narrow iso
pleths, leading to a less evenly distributed footprint contour as the wind 
shifted northward. Consequently, the horizontal dispersion of plumes on 
S10D under stable conditions (class D) was more pronounced than the 
vertical dispersion. This reflects a general pattern of plume dispersion, 
where high wind speeds tended to flatten the plume, reducing vertical 
mixing and stretching the plume horizontally, whereas low wind speeds 
tended to enhance vertical dispersion while reducing the horizontal 
distribution. These results emphasized that the Gaussian footprint 
method is somewhat unreliable under stable conditions, characterized 
by ineffective footprint identification and inaccurate emission rate 
estimation.

Therefore, we can summarize several important conditions for 
accurately quantifying emission rates, as follows. (1) Research flights 
should be conducted around fixed emission sources within a small radius 
to increase the possibility of observing plumes and minimize interfer
ence from other emission sources to ensure large differences from 
background concentrations. (2) Sampling altitudes less than the PBL 
height should be maintained to ensure comprehensive observations of 
the vertical distribution of the emitted plume. (3) Maintaining tight 

intervals between flight altitudes can enhance the vertical resolution of 
plume observations. Previous studies emphasized the importance of 
separating background concentrations from plume observations, and the 
number of flight transects at multiple altitudes is highly important for 
achieving accurate emission rate estimates (Cambaliza et al., 2014; 
Fiehn et al., 2020; Kim et al., 2023). (4) These strategies are essential for 
obtaining accurate and robust emission rates under optimal atmospheric 
sampling conditions with clear skies and low wind speeds as well as 
under unstable conditions to facilitate the detection of plume dispersion.

3.2. Comparison of the estimated emission rates for SO2 with the 
CleanSYS

The estimated SO2 emission rates for all the selected spirals calcu
lated via both the mass balance and Gaussian approaches, as described 
in Section 3.1, are summarized in Table 3. The mass balance method 
demonstrated considerable variability in SO2 emissions, with values of 
278 kg h− 1 ± 53 % at Taean and 186 kg h− 1 ± 41 % at Dangjin. Simi
larly, the Gaussian footprint method provided more converged estimates 
of 325 kg h− 1 ± 36 % at Taean and 274 kg h− 1 ± 41 % at Dangjin. 
Considering the uncertainties in CAPSS (~29 %) (Kim and Jang, 2014) 
and CleanSYS (~20 %), the estimates obtained with the Gaussian foot
print (>20 %) and mass balance method (>41 %) fall within an 
acceptable uncertainty range, but the Gaussian footprint approach dis
played more stable performance than the mass balance method. This 
difference can be partially attributed to the extrapolation techniques 
employed in the mass balance method because the extrapolation relies 
on assumptions about vertical concentration gradients below the lowest 
measured altitude, which may not accurately reflect the actual plume 
behavior near the surface. Previous studies have also highlighted that 
the choice of extrapolation methods for extending airborne concentra
tion data to ground level can significantly influence not only flux esti
mations but also the level of uncertainty (Gordon et al., 2015; Wong 
et al., 2024b). The correlations between the estimated SO2 emission 
rates and real-time CleanSYS measurements converged within a narrow 
range with high correlation coefficients (R) of >0.72 for Taean and 
>0.85 for Dangjin with the mass balance method (Fig. 4). While both 
approaches yielded acceptable ranges, slopes of the best-fit line were 
lower than unity, which indicated that the emission rates were under
estimated compared with those of the CleanSYS, except for those 

Fig. 3. Simulated Gaussian footprint results for Dangjin S10D (upper) and Taean S8T (lower). The plots (a) and (c) are SO2, and plots (b) and (d) are CO2.
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obtained with the Gaussian method at Dangjin. For Taean, the slope of 
the best-fit line obtained with the Gaussian method (0.69) was slightly 
greater than that obtained with the mass balance approach (0.64), with 
a similar R of 0.72.

Whereas the Gaussian approach at Dangjin significantly over
estimated the slope by 1.58 compared with the mass balance method 
(0.41), the slope obtained with the Gaussian approach decreased to 0.91 
when the lowest emission rate on S10D under stable conditions (class D) 
with strong winds was excluded, as mentioned in Section 3.1. Similarly, 
the slope and R for the mass balance at Dangjin increased to 0.85 and 
0.74, respectively, when class D was excluded, but the improvement in 
the correlation was much weaker than that in the Gaussian footprint. 
This result highlights that the estimated emission rates from both 
methods could be significantly influenced under stable conditions, 
especially in the Gaussian footprint approach for SO2.

Although the estimated emission rates were slightly different 
depending on the approach used, the R values between the two methods 

were comparable, namely, 0.70 for Taean and 0.73 (0.96 without class 
D) for Dangjin (Fig. 4c), along with lower estimation rates for the mass 
balance method (Table 3). This might be attributed to the sparse vertical 
sampling resolution, particularly at low altitudes (<400 m), resulting in 
a lack of representative information near the surface. Additionally, the 
large fluctuations in wind speed and direction during a research flight 
can decrease the accuracy of estimated emission rates due to inconsis
tent flux measurements because a steady-state plume is assumed in the 
mass balance method (Zondlo, 2021). Despite the limitations of the mass 
balance approach, its variation seems to be much narrower than that of 
the Gaussian footprint approach, which is sensitive under stable con
ditions at high wind speeds. This result suggests that averaging emission 
rates from the two approaches (the ensemble method) can provide 
reasonably estimated SO2 emission rates by reducing the impact of 
inherent biases in each individual method. In other words, its flexibility 
in utilizing both direct observations (mass balance) and model-driven 
observations (the Gaussian footprint approach) makes it highly 

Fig. 4. The correlation between TMS and estimated results is displayed in Taean (a) and Dangjin (b) powerplant. Plots (c) and (d) indicate a comparison of the 
estimated SO2 emission rates between mass balance and Gaussian footprint approaches and between TMS and our ensemble model, respectively. Open symbols in (b) 
and (c) represent data obtained under meteorological stability class D. The color solid lines (without Class D) and dashed lines (with Class D) indicate the best-fit line, 
while the gray dashed line represents the 1:1 line, respectively.
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adaptable across diverse datasets and environmental conditions and 
enhances the reliability of the final results. Notably, the R and slope of 
the best-fit line are improved, especially for Dangjin estimates (Fig. 4d).

However, the ensemble method also has limitations as its accuracy is 
inherently dependent on the quality of the input data, which means 
errors can propagate into the final estimates. Additionally, by averaging 
each estimation rate, some unique insights from individual methods may 
be diluted and potentially limit a more nuanced understanding of 
emission patterns. Despite these challenges, the ensemble method re
mains a valuable tool for achieving balanced and robust emission esti
mates when its limitations are carefully managed.

3.3. Estimation of CO2 emission rates using the same approaches

Given that real-time CleanSYS installed on stacks at power plants do 
not monitor CO2 emissions, there is no information on real-time CO2 
emission rates to validate our estimates directly. However, given the 
validated accuracy of SO2 emission rates in Section 3.2, our ensemble 
method provides an alternative approach for accurately estimating CO2 
emissions when the same parameters that produce reliable SO2 emission 
rates are applied. Considering the data used in the estimation of SO2 
emission rates, the quality of the estimated CO2 emission rates was 
confirmed by similar R values (0.77 for Taean and 0.99 for Dangjin) and 
the slope of the best-fit line (0.52 for Taean and 1.15 for Dangjin) 

between the mass balance and Gaussian footprint methods (Fig. 5). For 
all the data, the R value between the mass balance and Gaussian foot
print methods was high at >0.78 at both Taean and Dangjin, and the 
slope of the best fit lines was >0.48 for Taean and Dangjin. However, 
high intercepts (~1000 ton h− 1), which accounted for ~50 % of the 
emission rates, indicated that mass balance might be overestimated at 
low emission rates, and vice versa.

The overall mean of the estimated emission rates from the mass 
balance approach was 1906 ton h− 1 ± 51 % at Taean and 1775 ton h− 1 

± 55 % at Dangjin (Table 4). The Gaussian footprint method yielded 
marginally higher average CO2 emission rates at 2200 ton h− 1 ± 12 % 
and 2007 ton h− 1 ± 14 % for Taean and Dangjin, respectively; thus, the 
difference between these two methods was approximately 12 % at both 
power plants, which supports the accuracy of our ensemble method. In 
Dangjin, the difference increased to 22.5 % when accounting for the 
data used in the SO2 calculations, suggesting that the difference was 
minimized as the number of available data points increased. Therefore, 
these results implied that both methods produced generally consistent 
emission estimates, demonstrating their robustness by compensating for 
their inherent limitations.

Fig. 5. Correlation of CO2 estimated emission rates between mass balance and Gaussian footprint approaches at Taean (blue) and Dangjin (orange) powerplants. The 
color solid lines and gray dashed line indicate the best-fit and 1:1 line, respectively. Filled and open symbols represent data points which are used in SO2 estimation 
or not.
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3.4. Comparison of emission rates from the ensemble method and bottom- 
up emission inventories

Fig. 6a and b presents a comparison of estimated SO2 emission rates 
from the ensemble methods for the Taean and Dangjin power plants with 
real-time CleanSYS observations for 2022 (7 cases) and 2023 (3 cases) 
with notable variability. The estimated SO2 emission rates from the 
ensemble method were generally lower than the CleanSYS observations 
with absolute discrepancies of 3–29 % for Taean and 17–36 % for 
Dangjin as discussed in Section 3.2. With respect to the variation in 
emission rates, the difference from the CleanSYS values at Taean in the 
2022 cases was greater by approximately 24 % than that in the 2023 
cases, which was similar to results of the ensemble method (29 %). For 
Dangjin, the underestimation of emission rates was relatively pro
nounced with differences not only from the CleanSYS observations (35 
%) but also from results of the ensemble method (47 %) compared with 
the values in the 2023 cases. Notably, the estimated SO2 emission rates 
obtained with the ensemble method accurately captured the emission 
pattern from the CleanSYS observations despite the Gaussian footprint 
model using the constant CAPSS 2021 emission inventory as a priori 
information.

The estimated CO2 emission rates from the ensemble method in 2022 
(9 cases) and 2023 (9 cases) were compared with values in the EDGAR 
and ODIAC bottom-up inventories (Fig. 6c and d). In contrast to SO2 
emission rates, the estimated CO2 emission rates increased from 1665 to 
2700 ton h− 1 for Taean (62 %) and from 1337 to 2445 ton h− 1 for 
Dangjin (83 %) during the same periods. The decreasing emission rates 
of SO2 were also confirmed by CleanSYS when the data points were 
extended to match the CO2 cases (18 cases), and this shows a reduction 
from 409 kg h− 1 to 356 kg h− 1 for Taean (18 %) and from 328 kg h− 1 to 
208 kg h− 1 for Dangjin (37 %). These increases in CO2 were relatively 
higher than those reported in a previous study, which reported an in
crease of 42–55 % between 2019 and 2021 at the same two power plants 
under the stable operational load of the power plants, even at times with 
decreasing SO2 emission rates (Wong et al., 2024a). This contrasting 
trend between CO2 and SO2 emission rates might reflect additional in
fluences underlying operational factors and not an influence of the 
pandemic period.

The overestimation of CO2 emission rates in EDGAR was more pro
nounced in the 2022 cases at both Taean and Dangjin with values twice 

as high as those estimated with the ensemble method. The ODIAC 
emission rate at Taean in the 2022 cases was close to our estimated CO2 
emission rate of 12 %, whereas the ODIAC was 43 % lower in the 2023 
cases. The largest overestimation of ODIAC was observed in Dangjin in 
2022 at 48 %, which was close to that of EDGAR. It should be noted that 
the key insight from comparing CO2 emission rates between bottom-up 
emission inventories is that results align closely with ODIAC values 
despite the use of EDGAR data as a priori information in the Gaussian 
footprint method.

To explain the difference in SO2 and CO2 emission rates between the 
2022 and 2023 cases at the Taean and Dangjin power plants, operational 
factors, such as differences in monthly electricity production, and site- 
specific factors must be considered. When considering only months for 
which estimations were conducted, the weighted monthly average 
electricity production in 2022 (October and November) and 2023 (May, 
October, and November) did not show significant differences. The Taean 
power plant generated 2088 GWh of electricity in 2023, which slightly 
decreased by approximately 1 % compared to 2116 GWh in 2022. 
Similarly, electricity production in Dangjin decreased by approximately 
4 % from 2159 GWh in 2022 to 2069 GWh in 2023 (KEPCO, 2022, 
2023). Although the decreasing pattern in electricity production from 
the relevant months of 2022 to 2023 coincided with changes in the SO2 
emission rates, these small differences in electricity production at both 
power plants were negligible in terms of explaining reductions in SO2 
emission rates. The decreased SO2 emission rates might be influenced by 
the use of air pollution control devices, such as flue gas desulfurization 
(FGD) technology, to capture sulfur emissions (Park et al., 2019) and/or 
the low sulfur content of coal (Yu et al., 2021).

In contrast, the increasing CO2 emission rates with constant elec
tricity production might be explained by FGD. The desulfurization 
process might also contribute to the decrease in SO2 rates (Van Ewijk 
and McDowall, 2020; Zhao et al., 2010) and the increase in CO2 emis
sion rates through the wet limestone-gypsum FGD process. During this 
process, SO2 from flue gas dissolves in water to form sulfurous acid 
(H2SO3), which subsequently reacts with limestone (CaCO₃) in the re
action tank. The primary chemical reaction is as follows:

CaCO3(s)+H2SO3(aq)→CaSO3(s)+CO2(g)+H2O(l)

Next, CaCO3 neutralizes sulfurous acid and produces calcium sulfite 
(CaSO3), water, and CO2 as a byproduct. However, this mechanism 

Table 4 
Overall comparison of total emission rates of CO2 (ton h− 1) for Taean and Dangjin powerplant implemented by the mass balance and Gaussian footprint methods. The 
uncertainty associated with each estimate is indicated by the ± symbol, reflecting the quantified uncertainty bounds. EDGAR 2022 and ODIAC 2022 emission in
ventory for each location are the weight averaged CO2 emission rates based on the corresponding month of airborne measurement.

Location Spiral Mass balance Gaussian footprint Ensemble EDGAR 2022a ODIAC 2022b

Taean S1T 538 ± 1834 2717 ± 297 1628 ± 1706
S2T 1617 ± 943 1494 ± 248 1555 ± 692
S3T 584 ± 848 861 ± 187 723 ± 629
S4T 195 ± 770 660 ± 142 428 ± 601
S5T 4566 ± 972 3416 ± 300 3991 ± 921
S6T 2860 ± 722 3518 ± 292 3189 ± 641
S7T 2113 ± 762 2083 ± 323 2098 ± 585
S8T 2775 ± 945 2853 ± 308 2814 ± 704
Mean 1906 ± 974 2200 ± 262 2053 ± 585 3467 ± 246 1884 ± 134

Dangjin S1D 1629 ± 575 2111 ± 261 1870 ± 508
S2D 1389 ± 1325 1788 ± 251 1589 ± 974
S3D 535 ± 715 820 ± 205 678 ± 545
S4D 823 ± 692 1615 ± 247 1219 ± 653
S5D 1193 ± 883 1466 ± 432 1329 ± 708
S6D 4007 ± 1295 3253 ± 276 3630 ± 1009
S7D 1690 ± 1652 2207 ± 272 1949 ± 1212
S8D 3847 ± 1237 2543 ± 275 3195 ± 1108
S9D 1400 ± 776 2737 ± 277 2068 ± 887
S10D 1237 ± 669 1531 ± 241 1384 ± 524
Mean 1775 ± 982 2007 ± 274 1845 ± 625 3248 ± 231 2573 ± 183

a EDGAR uncertainty: 7.1 % (Solazzo et al., 2021).
b ODIAC uncertainty: 7.1 % (Oda and Maksyutov, 2011).
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cannot fully explain the observed changes in emission rates at the power 
plants in this study because there are other contributing factors, such as 
the usage of carbon-intensive fuel sources (Grant et al., 2021) and/or 
more intensive operation (Akpan and Fuls, 2021) during research flight 
periods than at other times, which result in higher estimated CO2 
emissions.

The difference between ODIAC and EDGAR 2022 values and our 
ensemble estimates can be explained by their spatial resolutions, as both 
ODIAC and EDGAR provide monthly emission values for short-term 
comparisons at a high resolution. However, ODIAC has a much finer 
spatial resolution (1 km by 1 km), requiring summation over several grid 
cells to match coarser spatial coverage of EDGAR at 0.1◦ by 0.1◦ (~11 
km by ~11 km). For these reasons, it is difficult to extract solely local
ized, short-term emissions for the Taean and Dangjin power plants. The 
coarse resolution of EDGAR leads to significant spatial uncertainties and 
reduces the accuracy of representing specific emission sources (Ahn 
et al., 2023; Puliafito et al., 2017). Therefore, the lower emission rates 
from the top-down approach than from EDGAR are likely a result of its 
broader spatial resolution, although we accounted for only power plants 
in our approach.

4. Conclusions

Eighteen representative spiral flights around the Taean and Dangjin 
power plants were selected for the quantification of SO2 and CO2 
emission rates via two top-down methodologies: the mass balance 
method and Gaussian footprint approach. By comparing the curtain 
plots from the mass balance approach and the footprint results from the 

Gaussian method, several important conditions can be summarized to 
accurately quantify emission rates as follows: research should focus on 
fixed emission sources with (1) a small radius, (2) lower than the PBL 
height, (3) a fine vertical resolution, and (4) unstable atmospheric 
stability.

To verify the accuracy of our estimation methods, we validated es
timates of the SO2 emission rate from all selected spirals. Although the R 
values between the mass balance and Gaussian footprint methods were 
comparable at >0.70 at the two sites, the mass balance method resulted 
in a lower SO2 estimate with relatively high uncertainty, indicating that 
the Gaussian footprint approach performed more stably. This might be 
attributed to the choice of extrapolation methods for extending the 
concentration at the lowest altitude of airborne data to the ground-level 
concentration. Despite these limitations of the mass balance approach, 
its variation seems to be much narrower than that of the Gaussian 
method, which is sensitive under stable conditions at high wind speeds. 
Thus, this result suggests that averaging emission rates from two ap
proaches (the ensemble method) can provide reasonable estimated SO2 
emission rates because the R (>0.78) and slope of the best-fit line 
(>0.67) with the CleanSYS data were improved, especially for Dangjin. 
This finding indicates that the ensemble method is less sensitive to 
meteorological conditions, making it a reliable approach when atypical 
conditions are dominant.

By applying the same parameters that produced reliable SO2 emis
sion rates, we estimated the CO2 emissions during the same periods 
extending to the whole dataset. The R value between the results of the 
mass balance and Gaussian footprint methods was high, at >0.78 at both 
Taean and Dangjin, along with a similar slope for the best fit lines 

Fig. 6. Comparison of the estimated SO2 (a and b) and CO2 (c and d) emission rates from our ensemble model with bottom-up emission inventories (EDGARv8.0 and 
ODIAC) for Taean (left panel) and Dangjin (right panel) powerplants in 2022 and 2023. EDGAR and ODIAC are weight averaged CO2 emission rates based on the 
corresponding month of airborne measurement.
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(~0.48) and high intercepts for ~50 % of the emission rates, indicating 
that the mass balance method might yield overestimates at low emission 
rates, and vice versa. The difference between the two methods decreased 
as the number of available data points increased; thus, both methods 
generally produced consistent emission estimates, demonstrating their 
robustness by compensating for their inherent limitations.

On the basis of our ensemble method, the variations in estimated SO2 
and CO2 emission rates were investigated at the Taean and Dangjin 
power plants for the 2022 and 2023 cases. The difference in estimated 
SO2 emission rates between the relevant months of 2022 and 2023 was 
coincident with that from the CleanSYS values not only in pattern but 
also in the magnitude of decrease (38 % for the ensemble method results 
and 30 % for the CleanSYS values for both power plants). Notably, SO2 
emission rates estimated with the ensemble method accurately capture 
the emission pattern from the CleanSYS values despite the Gaussian 
footprint method using the constant CAPSS 2021 emission inventory as a 
priori information. In contrast to that in SO2 emission rates, the varia
tion in estimated CO2 emission rates increased at both Taean (~62 %) 
and Dangjin (~83 %) during the same periods. CO2 emission rates in 
EDGAR were overestimated at both Taean and Dangjin, especially in the 
2022 cases, but the ODIAC emission rates were relatively close to our 
estimated CO2 emission rates despite the use of monthly EDGAR emis
sion rates as a prior information in the Gaussian footprint approach. 
Given that the monthly electricity production in the 2022 and 2023 
cases did not significantly differ, the decreased SO2 emission rates might 
be influenced by the use of air pollution control devices (e.g., flue gas 
desulfurization technology) and/or the low sulfur content of coal. 
However, the increasing CO2 emission rates might be explained by the 
usage of carbon-intensive fuel sources and/or power plant activity 
changes during certain periods.

In this study, a reliable ensemble method was developed by 
combining mass balance and Gaussian footprint approaches to estimate 
SO2 and CO2 emission rates from two large point sources by compen
sating for the limitations of each model under specific environmental 
and measurement conditions observed in eighteen selected spirals. 
These findings emphasize the potential of top-down approaches to 
improve emission estimates, particularly for large, stationary sources 
where real-time monitoring systems are limited or unavailable. While 
the ensemble method demonstrated robust performance under the 
optimized conditions, its broader applicability to other emission sources 
or environments should be explored in future research. Therefore, we 
suggest that this approach can serve as a complementary tool for 
emission monitoring, especially when used alongside other established 
bottom-up and top-down methodologies.
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